Natalia Moreno Palmerola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7893385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How can ventilation be improved on public transportation buses? Insights from CO2 measurements. Environmental Research, 2022, 205, 112451.	7.5	17
2	Significant enrichment of Rb and Cs in the Late Triassic coals from the Coc Sau surface mine, Cam Pha Coalfield, Quang Ninh Province, Vietnam. Ore Geology Reviews, 2022, 142, 104700.	2.7	4
3	Characterization of deposited dust and its respirable fractions in underground coal mines: Implications for oxidative potential-driving species and source apportionment. International Journal of Coal Geology, 2022, 258, 104017.	5.0	11
4	Geological Controls on Geochemical Anomaly of the Carbonaceous Mudstones in Xian'an Coalfield, Guangxi Province, China. Energies, 2022, 15, 5196.	3.1	1
5	Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environment International, 2021, 147, 106326.	10.0	119
6	Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China. International Journal of Coal Geology, 2021, 235, 103677.	5.0	40
7	Geological Controls on Enrichment of Rare Earth Elements and Yttrium (REY) in Late Permian Coals and Non-Coal Rocks in the Xian'an Coalfield, Guangxi Province. Minerals (Basel, Switzerland), 2021, 11, 301.	2.0	5
8	Bioaerosols in public and tourist buses. Aerobiologia, 2021, 37, 525-541.	1.7	2
9	Characterizing the Chemical Profile of Incidental Ultrafine Particles for Toxicity Assessment Using an Aerosol Concentrator. Annals of Work Exposures and Health, 2021, 65, 966-978.	1.4	5
10	Geochemistry and oxidative potential of the respirable fraction of powdered mined Chinese coals. Science of the Total Environment, 2021, 800, 149486.	8.0	9
11	Insight into PM _{2.5} sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing. Atmospheric Chemistry and Physics, 2021, 21, 14703-14724.	4.9	35
12	Mineralogical and geochemical variations from coal to deposited dust and toxicity of size-segregated respirable dust in a blasting mining underground coal mine in Hunan Province, South China. International Journal of Coal Geology, 2021, 248, 103863.	5.0	11
13	The geochemical evolution of brines from phosphogypsum deposits in Huelva (SW Spain) and its environmental implications. Science of the Total Environment, 2020, 700, 134444.	8.0	11
14	Understanding the impact of FGD technologies on the emissions of key pollutants in a Co-Firing power plant. Journal of the Energy Institute, 2020, 93, 518-532.	5.3	6
15	Chemistry and sources of PM2.5 and volatile organic compounds breathed inside urban commuting and tourist buses. Atmospheric Environment, 2020, 223, 117234.	4.1	8
16	New Data and Evidence on the Mineralogy and Geochemistry of Wulantuga High-Ge Coal Deposit of Shengli Coalfield, Inner Mongolia, China. Minerals (Basel, Switzerland), 2020, 10, 17.	2.0	0
17	Enrichment of Nb-Ta-Zr-W-Li in the Late Carboniferous Coals from the Weibei Coalfield, Shaanxi, North China. Energies, 2020, 13, 4818.	3.1	4
18	Geological controls on the distribution of REY-Zr (Hf)-Nb (Ta) enrichment horizons in late Permian coals from the Qiandongbei Coalfield, Guizhou Province, SW China. International Journal of Coal Geology. 2020. 231. 103604.	5.0	33

#	Article	IF	CITATIONS
19	Utilization of Boiler Slag from Pulverized-Coal-Combustion Power Plants in China for Manufacturing Acoustic Materials. Energies, 2020, 13, 5705.	3.1	1
20	Snow Impurities in the Central Pyrenees: From Their Geochemical and Mineralogical Composition towards Their Impacts on Snow Albedo. Atmosphere, 2020, 11, 937.	2.3	10
21	Enrichment of Li–Ga–Zr–Hf and Se–Mo–Cr–V–As–Pb Assemblages in the No. 11 Superhigh Orga Sulfur Coal from the Sangshuping Coal Mine, Weibei Coalfield, Shaanxi, North China. Energies, 2020, 13, 6660.	anic 3.1	4
22	Mineralogy, geochemistry and toxicity of size-segregated respirable deposited dust in underground coal mines. Journal of Hazardous Materials, 2020, 399, 122935.	12.4	52
23	Mineralogy and Geochemistry of Late Permian Coals within the Tongzi Coalfield in Guizhou Province, Southwest China. Minerals (Basel, Switzerland), 2020, 10, 44.	2.0	8
24	Geological Controls on Mineralogy and Geochemistry of the Permian and Jurassic Coals in the Shanbei Coalfield, Shaanxi Province, North China. Minerals (Basel, Switzerland), 2020, 10, 138.	2.0	3
25	Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer. Science of the Total Environment, 2020, 731, 139002.	8.0	34
26	Production of environmentally friendly sand-like products from granitoid waste sludge and coal fly ash for civil engineering. Journal of Cleaner Production, 2019, 238, 117880.	9.3	9
27	Mineralogical and Environmental Geochemistry of Coal Combustion Products from Shenhuo and Yihua Power Plants in Xinjiang Autonomous Region, Northwest China. Minerals (Basel, Switzerland), 2019, 9, 496.	2.0	4
28	Mineralogical, chemical and leaching characteristics of ashes from residential biomass combustion. Environmental Science and Pollution Research, 2019, 26, 22688-22703.	5.3	6
29	The mode of occurrence and origin of minerals in the Early Permian high-rank coals of the Jimunai depression, Xinjiang Uygur Autonomous Region, NW China. International Journal of Coal Geology, 2019, 205, 58-74.	5.0	20
30	Geological controls on enrichment of Mn, Nb (Ta), Zr (Hf), and REY within the Early Permian coals of the Jimunai Depression, Xinjiang Province, NW China. International Journal of Coal Geology, 2019, 215, 103298.	5.0	17
31	Simultaneous ammonium and phosphate recovery and stabilization from urban sewage sludge anaerobic digestates using reactive sorbents. Science of the Total Environment, 2018, 630, 781-789.	8.0	37
32	Fixation of treated phosphate waste and its use in concrete. Journal of Cleaner Production, 2018, 178, 89-97.	9.3	6
33	Utilization of coal fly ash from a Chinese power plant for manufacturing highly insulating foam glass: Implications of physical, mechanical properties and environmental features. Construction and Building Materials, 2018, 175, 64-76.	7.2	36
34	Potential of hazardous waste encapsulation in concrete with coal fly ash and bivalve shells. Journal of Cleaner Production, 2018, 185, 870-881.	9.3	14
35	A review on the applications of coal combustion products in China. International Geology Review, 2018, 60, 671-716.	2.1	56
36	Environmental impact and potential use of coal fly ash and sub-economical quarry fine aggregates in concrete. Journal of Hazardous Materials, 2018, 344, 1043-1056.	12.4	34

#	Article	IF	CITATIONS
37	Enrichment and distribution of elements in the Late Permian coals from the Zhina Coalfield, Guizhou Province, Southwest China. International Journal of Coal Geology, 2017, 171, 111-129.	5.0	48
38	Recovery of nutrients (N-P-K) from potassium-rich sludge anaerobic digestion side-streams by integration of a hybrid sorption-membrane ultrafiltration process: Use of powder reactive sorbents as nutrient carriers. Science of the Total Environment, 2017, 599-600, 422-430.	8.0	20
39	Copper Flash Smelting Flue Dust as a Source of Germanium. Waste and Biomass Valorization, 2017, 8, 2121-2129.	3.4	21
40	Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer. Journal of Environmental Chemical Engineering, 2017, 5, 160-169.	6.7	66
41	Powdered Caâ€activated zeolite for phosphate removal from treated wasteâ€water. Journal of Chemical Technology and Biotechnology, 2016, 91, 1962-1971.	3.2	53
42	Integration of Powdered Ca-Activated Zeolites in a Hybrid Sorption–Membrane Ultrafiltration Process for Phosphate Recovery. Industrial & Engineering Chemistry Research, 2016, 55, 6204-6212.	3.7	12
43	Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. International Journal of Coal Geology, 2016, 167, 157-175.	5.0	55
44	Physical and chemical changes in coal fly ash during acidic or neutral wastes treatment, and its' effect on the fixation process. Fuel, 2016, 184, 69-80.	6.4	20
45	Geological controls on mineralogy and geochemistry of the Late Permian coals in the Liulong Mine of the Liuzhi Coalfield, Guizhou Province, Southwest China. International Journal of Coal Geology, 2016, 154-155, 1-15.	5.0	22
46	Workplace Exposure to Process-Generated Ultrafine and Nanoparticles in Ceramic Processes Using Laser Technology. Handbook of Environmental Chemistry, 2015, , 159-179.	0.4	3
47	Ultrafine and nanoparticle formation and emission mechanisms during laser processing of ceramic materials. Journal of Aerosol Science, 2015, 88, 48-57.	3.8	34
48	Potential utilization of FGD gypsum and fly ash from a Chinese power plant for manufacturing fire-resistant panels. Construction and Building Materials, 2015, 95, 910-921.	7.2	64
49	Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer. Journal of Hazardous Materials, 2014, 265, 242-252.	12.4	59
50	CO 2 carbonation under aqueous conditions using petroleum coke combustion fly ash. Chemosphere, 2014, 117, 139-143.	8.2	14
51	Influence of an aluminium additive in aqueous and solid speciation of elements in flue gas desulphurisation (FGD) system. Energy, 2013, 50, 438-444.	8.8	15
52	Quantitative Rietveld analysis of the crystalline and amorphous phases in coal fly ashes. Fuel, 2013, 105, 314-317.	6.4	49
53	Biochar Derived from Agricultural and Forestry Residual Biomass: Characterization and Potential Application for Enzymes Immobilization. Journal of Biobased Materials and Bioenergy, 2013, 7, 724-732.	0.3	31
54	High quality of Jurassic Coals in the Southern and Eastern Junggar Coalfields, Xinjiang, NW China: Geochemical and mineralogical characteristics. International Journal of Coal Geology, 2012, 99, 1-15.	5.0	68

#	Article	IF	CITATIONS
55	Health effects from Sahara dust episodes in Europe: Literature review and research gaps. Environment International, 2012, 47, 107-114.	10.0	194
56	Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China. Fuel, 2012, 95, 446-456.	6.4	101
57	Fate and abatement of mercury and other trace elements in a coal fluidised bed oxy combustion pilot plant. Fuel, 2012, 95, 272-281.	6.4	80
58	Development of a non-conventional sorbent from fly ash and its potential use in acid wastewater neutralization and heavy metal removal. Chemical Engineering Journal, 2011, 166, 896-905.	12.7	18
59	Fly ash from a Mexican mineral coal I: Mineralogical and chemical characterization. Journal of Hazardous Materials, 2010, 181, 82-90.	12.4	83
60	X-ray powder diffraction-based method for the determination of the glass content and mineralogy of coal (co)-combustion fly ashes. Fuel, 2010, 89, 2971-2976.	6.4	56
61	Partitioning of elements in a entrained flow IGCC plant: Influence of selected operational conditions. Fuel, 2010, 89, 3250-3261.	6.4	38
62	Study of a Chilean petroleum coke fluidized bed combustion fly ash and its potential application in copper, lead and hexavalent chromium removal. Fuel, 2010, 89, 3012-3021.	6.4	21
63	Determination of direct and fugitive PM emissions in a Mediterranean harbour by means of classic and novel tracer methods. Journal of Environmental Management, 2009, 91, 133-141.	7.8	20
64	Fly ashes from coal and petroleum coke combustion: current and innovative potential applications. Waste Management and Research, 2009, 27, 976-987.	3.9	72
65	Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction. Journal of Hazardous Materials, 2009, 166, 94-102.	12.4	39
66	Fly Ash Utilization for the Development of Low NOx Bed Materials. Open Fuels and Energy Science Journal, 2009, 2, 27-30.	0.2	3
67	Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. Journal of Hazardous Materials, 2008, 154, 175-183.	12.4	375
68	Influence of the co-firing on the leaching of trace pollutants from coal fly ash. Fuel, 2008, 87, 1958-1966.	6.4	58
69	Influence of a Modification of the Petcoke/Coal Ratio on the Leachability of Fly Ash and Slag Produced from a Large PCC Power Plant. Environmental Science & Technology, 2007, 41, 5330-5335.	10.0	26
70	Levels of outdoor PM2.5, absorbance and sulphur as surrogates for personal exposures among post-myocardial infarction patients in Barcelona, Spain. Atmospheric Environment, 2007, 41, 1539-1549.	4.1	12
71	Estimates of atmospheric particle emissions from bulk handling of dusty materials in Spanish Harbours. Atmospheric Environment, 2007, 41, 6356-6365.	4.1	13
72	Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor. Atmospheric Environment, 2007, 41, 6344-6355.	4.1	11

#	Article	IF	CITATIONS
73	Contribution of harbour activities to levels of particulate matter in a harbour area: Hada Project-Tarragona Spain. Atmospheric Environment, 2007, 41, 6366-6378.	4.1	51
74	Characterisation of dust material emitted during harbour operations (HADA Project). Atmospheric Environment, 2007, 41, 6331-6343.	4.1	25
75	Mineralogy and geochemistry of the coals from the Chongqing and Southeast Hubei coal mining districts, South China. International Journal of Coal Geology, 2007, 71, 263-275.	5.0	49
76	Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 2006, 62, 171-180.	8.2	170
77	Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel, 2005, 84, 1351-1363.	6.4	247
78	Application of zeolitised coal fly ashes to the depuration of liquid wastes. Fuel, 2005, 84, 1440-1446.	6.4	27
79	Metal Adsorption on Clays from Pyrite Contaminated Soil. Journal of Environmental Engineering, ASCE, 2005, 131, 1052-1056.	1.4	9
80	MEASUREMENT OF PARTICULATE MATTER EMITTED DURING BULK HANDLING ACTIVITIES IN A HARBOUR AREA IN SPAIN. Journal of Aerosol Science, 2004, 35, S1001-S1002.	3.8	0
81	Characterisation of the glass fraction of a selection of European coal fly ashes. Journal of Chemical Technology and Biotechnology, 2004, 79, 540-546.	3.2	37
82	Determining suitability of a fly ash for silica extraction and zeolite synthesis. Journal of Chemical Technology and Biotechnology, 2004, 79, 1009-1018.	3.2	16
83	Pure zeolite synthesis from silica extracted from coal fly ashes. Journal of Chemical Technology and Biotechnology, 2002, 77, 274-279.	3.2	58
84	Modelling of the glass phase in fly ashes using network connectivity theory. Journal of Chemical Technology and Biotechnology, 2002, 77, 240-245.	3.2	10
85	Zeolitic material synthesised from fly ash: use as cationic exchanger. Journal of Chemical Technology and Biotechnology, 2002, 77, 299-304.	3.2	18
86	Application of zeolitic material synthesised from fly ash to the decontamination of waste water and flue gas. Journal of Chemical Technology and Biotechnology, 2002, 77, 292-298.	3.2	82
87	Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology, 2002, 50, 413-423.	5.0	707
88	Utilization of Zeolites Synthesized from Coal Fly Ash for the Purification of Acid Mine Waters. Environmental Science & Technology, 2001, 35, 3526-3534.	10.0	179
89	Potential Environmental Applications of Pure Zeolitic Material Synthesized from Fly Ash. Journal of Environmental Engineering, ASCE, 2001, 127, 994-1002.	1.4	34

90 Novel Products and Applications with Combustion Residues. , 0, , 199-378.

0