
Joyce M Slingerland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7893186/publications.pdf Version: 2024-02-01

LOVCE M SLINCEPLAND

#	Article	IF	CITATIONS
1	DOT1L Is a Novel Cancer Stem Cell Target for Triple-Negative Breast Cancer. Clinical Cancer Research, 2022, 28, 1948-1965.	7.0	21
2	Vitamin C sensitizes triple negative breast cancer to PI3K inhibition therapy. Theranostics, 2021, 11, 3552-3564.	10.0	5
3	Development of a multigenerational digital lifestyle intervention for women cancer survivors and their families. Psycho-Oncology, 2020, 29, 182-194.	2.3	9
4	The Major Pre- and Postmenopausal Estrogens Play Opposing Roles in Obesity-Driven Mammary Inflammation and Breast Cancer Development. Cell Metabolism, 2020, 31, 1154-1172.e9.	16.2	58
5	p27 as a Transcriptional Regulator: New Roles in Development and Cancer. Cancer Research, 2020, 80, 3451-3458.	0.9	75
6	Obtaining Human Breast Adipose Cells for Breast Cancer Cell Co-culture Studies. STAR Protocols, 2020, 1, 100197.	1.2	8
7	p27 transcriptionally coregulates cJun to drive programs of tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7005-7014.	7.1	29
8	Vitamin C supplementation expands the therapeutic window of BETi for triple negative breast cancer. EBioMedicine, 2019, 43, 201-210.	6.1	19
9	Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression. Scientific Reports, 2018, 8, 5306.	3.3	63
10	Dual Src and MEK Inhibition Decreases Ovarian Cancer Growth and Targets Tumor Initiating Stem-Like Cells. Clinical Cancer Research, 2018, 24, 4874-4886.	7.0	60
11	p16 loss rescues functional decline of Brca1-deficient mammary stem cells. Cell Cycle, 2017, 16, 759-764.	2.6	7
12	<scp>VEGFA</scp> activates an epigenetic pathway upregulating ovarian cancerâ€initiating cells. EMBO Molecular Medicine, 2017, 9, 304-318.	6.9	63
13	Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. Ca-A Cancer Journal for Clinicians, 2017, 67, 378-397.	329.8	551
14	Interactions between Adipocytes and Breast Cancer Cells Stimulate Cytokine Production and Drive Src/Sox2/miR-302b–Mediated Malignant Progression. Cancer Research, 2016, 76, 491-504.	0.9	142
15	MAPK Activation Predicts Poor Outcome and the MEK Inhibitor, Selumetinib, Reverses Antiestrogen Resistance in ER-Positive High-Grade Serous Ovarian Cancer. Clinical Cancer Research, 2016, 22, 935-947.	7.0	42
16	<i>p16INK4a</i> suppresses BRCA1-deficient mammary tumorigenesis. Oncotarget, 2016, 7, 84496-84507.	1.8	10
17	Primary breast tumor-derived cellular models: characterization of tumorigenic, metastatic, and cancer-associated fibroblasts in dissociated tumor (DT) cultures. Breast Cancer Research and Treatment, 2014, 144, 503-517.	2.5	31
18	Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nature Reviews Cancer, 2014, 14, 26-38.	28.4	123

#	Article	IF	CITATIONS
19	Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways. Cell, 2014, 159, 499-513.	28.9	659
20	Triple negative breast cancer initiating cell subsets differ in functional and molecular characteristics and in γâ€secretase inhibitor drug responses. EMBO Molecular Medicine, 2013, 5, 1502-1522.	6.9	62
21	Cytokines, Obesity, and Cancer: New Insights on Mechanisms Linking Obesity to Cancer Risk and Progression. Annual Review of Medicine, 2013, 64, 45-57.	12.2	249
22	New insights on the role of hormonal therapy in ovarian cancer. Steroids, 2013, 78, 530-537.	1.8	50
23	PI3K/mTOR inhibition can impair tumor invasion and metastasis in vivo despite a lack of antiproliferative action in vitro: implications for targeted therapy. Breast Cancer Research and Treatment, 2013, 138, 369-381.	2.5	46
24	Src Inhibition with Saracatinib Reverses Fulvestrant Resistance in ER-Positive Ovarian Cancer Models <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2012, 18, 5911-5923.	7.0	69
25	Inhibition of the Rho GTPase, Rac1, decreases estrogen receptor levels and is a novel therapeutic strategy in breast cancer. Endocrine-Related Cancer, 2011, 18, 207-19.	3.1	41
26	Combined Src and ER blockade impairs human breast cancer proliferation in vitro and in vivo. Breast Cancer Research and Treatment, 2011, 128, 69-78.	2.5	48
27	p27: A Barometer of Signaling Deregulation and Potential Predictor of Response to Targeted Therapies. Clinical Cancer Research, 2011, 17, 12-18.	7.0	172
28	Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. Journal of Clinical Investigation, 2011, 121, 1231-1241.	8.2	362
29	Lapatinib: new opportunities for management of breast cancer. Breast Cancer: Targets and Therapy, 2010, 2, 79.	1.8	9
30	p27 as Jekyll and Hyde: Regulation of cell cycle and cell motility. Cell Cycle, 2009, 8, 3455-3461.	2.6	107
31	RSK1 drives p27 ^{Kip1} phosphorylation at T198 to promote RhoA inhibition and increase cell motility. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9268-9273.	7.1	142
32	Combined Src and Aromatase Inhibition Impairs Human Breast Cancer Growth <i>In vivo</i> and Bypass Pathways Are Activated in AZD0530-Resistant Tumors. Clinical Cancer Research, 2009, 15, 3396-3405.	7.0	60
33	The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nature Reviews Cancer, 2008, 8, 253-267.	28.4	869
34	mTOR-Raptor Binds and Activates SGK1 to Regulate p27 Phosphorylation. Molecular Cell, 2008, 30, 701-711.	9.7	236
35	Phosphorylation of p27 ^{Kip1} Regulates Assembly and Activation of Cyclin D1-Cdk4. Molecular and Cellular Biology, 2008, 28, 6462-6472.	2.3	94
36	p27 Phosphorylation by Src Regulates Inhibition of Cyclin E-Cdk2. Cell, 2007, 128, 281-294.	28.9	338

JOYCE M SLINGERLAND

#	Article	IF	CITATIONS
37	The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biology, 2007, 9, 218-224.	10.3	782
38	Src promotes estrogen-dependent estrogen receptor α proteolysis in human breast cancer. Journal of Clinical Investigation, 2007, 117, 2205-2215.	8.2	76
39	The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Research, 2005, 65, 18-25.	0.9	149
40	CRM1/Ran-Mediated Nuclear Export of p27Kip1Involves a Nuclear Export Signal and Links p27 Export and Proteolysis. Molecular Biology of the Cell, 2003, 14, 201-213.	2.1	174
41	Altered p27 Kip1 Phosphorylation, Localization, and Function in Human Epithelial Cells Resistant to Transforming Growth Factor Î ² -Mediated G 1 Arrest. Molecular and Cellular Biology, 2002, 22, 2993-3002.	2.3	64
42	PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nature Medicine, 2002, 8, 1153-1160.	30.7	880
43	Constitutive MEK/MAPK Activation Leads to p27Kip1Deregulation and Antiestrogen Resistance in Human Breast Cancer Cells. Journal of Biological Chemistry, 2001, 276, 40888-40895.	3.4	116
44	Interleukin-6 dependent induction of the cyclin dependent kinase inhibitor p21WAF1/CIP1 is lost during progression of human malignant melanoma. Oncogene, 1999, 18, 1023-1032.	5.9	71
45	E-Cadherin–dependent Growth Suppression is Mediated by the Cyclin-dependent Kinase Inhibitor p27KIP1. Journal of Cell Biology, 1998, 142, 557-571.	5.2	408
46	Decreased levels of the cell-cycle inhibitor p27Kip1 protein: Prognostic implications in primary breast cancer. Nature Medicine, 1997, 3, 227-230.	30.7	770
47	Impact of the cyclin–dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents. Nature Medicine, 1996, 2, 1204-1210.	30.7	291