List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7892638/publications.pdf Version: 2024-02-01

Huili Xu

#	Article	IF	CITATIONS
1	A chromone hydrazide Schiff base fluorescence probe with high selectivity and sensitivity for the detection and discrimination of human serum albumin (HSA) and bovine serum albumin (BSA). Journal of Photochemistry and Photobiology A: Chemistry, 2022, 422, 113576.	3.9	26
2	The role of nitro group on the excited-state relaxation mechanism of P-Z base pair. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120549.	3.9	1
3	Promotion of TH3 (T = Si and Ge) group transfer within a tetrel bond by a cationâ€"ï€ interaction. Physical Chemistry Chemical Physics, 2022, 24, 1113-1119.	2.8	3
4	Spodium and tetrel bonds involving Zn(II)/Cd(II) and their interplay. Chemical Physics, 2022, 556, 111470.	1.9	6
5	Insight into Spodium–π Bonding Characteristics of the MX2â<Ï€ (M = Zn, Cd and Hg; X = Cl, Br and I) Complexes—A Theoretical Study. Molecules, 2022, 27, 2885.	3.8	4
6	AIE mechanism of 2-(2-hydroxyphenyl) benzothiazole derivatives: CASPT2 and spin-flip study. Dyes and Pigments, 2022, 204, 110396.	3.7	2
7	Resonance-assisted intramolecular triel bonds. Physical Chemistry Chemical Physics, 2022, 24, 15015-15024.	2.8	6
8	Unusual substituent effects in the Tr···Te triel bond. International Journal of Quantum Chemistry, 2021, 121, e26526.	2.0	6
9	Cooperative effects between triel and halogen bonds in complexes of pyridine derivatives: An opposite effect of the nitrogen oxidation on triel and halogen bonds. International Journal of Quantum Chemistry, 2021, 121, e26429.	2.0	6
10	A theoretical study on the excited-state deactivation paths for the A–5FU dimer. Physical Chemistry Chemical Physics, 2021, 23, 16089-16106.	2.8	3
11	Theoretical investigation of the nature of Ï€(Bî€,B)â< M interactions in coinage metal Ï€-diborene complexes. New Journal of Chemistry, 2021, 45, 13380-13388.	2.8	5
12	Weak Ïfâ€Hole Triel Bond between C 5 H 5 Tr (Tr=B, Al, Ga) and Haloethyne: Substituent and Cooperativity Effects. ChemPhysChem, 2021, 22, 481-487.	2.1	15
13	Graphitic SiC : A potential anode material for Naâ€ion battery with extremely high storage capacity. International Journal of Quantum Chemistry, 2021, 121, e26608.	2.0	2
14	Diboron Bonds Between BX 3 (X=H, F, CH 3) and BYZ 2 (Y=H, F; Z=CO, N 2 , CNH). ChemPhysChem, 2021, 22, 1461-1469.	2.1	4
15	Can metal halides be electron donors in Ïfâ€hole and Ï€â€hole tetrel bonds? Cooperativity with an alkalineâ€earth bond. International Journal of Quantum Chemistry, 2021, 121, e26771.	2.0	1
16	Group 12 Carbonates and their Binary Complexes with Nitrogen Bases and FH 2 Z Molecules (Z=P, As,) Tj ETQqO	0 0 rgBT 2.1	/Overlock 10

17	Enhancement of the Tetrel Bond by the Effects of Substituents, Cooperativity, and Electric Field: Transition from Noncovalent to Covalent Bond. ChemPhysChem, 2021, 22, 2305-2312.	2.1	6
18	A novel double target fluorescence probe for Al3+/Mg2+ detection with distinctively different responses and its applications in cell imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120067.	3.9	26

Huı-Lı Xu

#	Article	IF	CITATIONS
19	Noncovalent bond between tetrel π-hole and hydride. Physical Chemistry Chemical Physics, 2021, 23, 10536-10544.	2.8	2
20	Comparison for Electron Donor Capability of Carbon-Bound Halogens in Tetrel Bonds. ACS Omega, 2021, 6, 29037-29044.	3.5	3
21	Chalcogen Bond Involving Zinc(II)/Cadmium(II) Carbonate and Its Enhancement by Spodium Bond. Molecules, 2021, 26, 6443.	3.8	6
22	Tetrel Bonds between Phenyltrifluorosilane and Dimethyl Sulfoxide: Influence of Basis Sets, Substitution and Competition. Molecules, 2021, 26, 7231.	3.8	4
23	Comparison of triel bonds with different chalcogen electron donors: Its dependence on triel donor and methyl substitution. International Journal of Quantum Chemistry, 2020, 120, e26046.	2.0	11
24	Regular/abnormal variation in the strength and nature of the halogen bond between H ₂ Te and the dihalogens: Prominent effect of methyl substituents. Applied Organometallic Chemistry, 2020, 34, e5468.	3.5	3
25	The development of coumarin Schiff base system applied as highly selective fluorescent/colorimetric probes for Cu2+ and tumor biomarker glutathione detection. Dyes and Pigments, 2020, 175, 108156.	3.7	51
26	Tuning the Competition between Hydrogen and Tetrel Bonds by a Magnesium Bond. ChemPhysChem, 2020, 21, 212-219.	2.1	28
27	A highly selective colorimetric and fluorescent probe for quantitative detection of Cu2+/Co2+: The unique ON-OFF-ON fluorimetric detection strategy and applications in living cells/zebrafish. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117763.	3.9	26
28	Interactions in Model Ionic Dyads and Triads Containing Tetrel Atoms. Molecules, 2020, 25, 4197.	3.8	3
29	Novel 2â€hydroxynaphthaleneâ€based fluorescent turnâ€on sensor for highly sensitive and selective detection of Al ³⁺ and its application in imaging <i>in vitro</i> and <i>in vivo</i> . Applied Organometallic Chemistry, 2020, 34, e5812.	3.5	13
30	Highly selective and sensitive chemosensor for Al(III) based on isoquinoline Schiff base. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 243, 118754.	3.9	31
31	A dual-functional fluorescent probe for sequential determination of Cu2+/S2â^ and its applications in biological systems. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 243, 118797.	3.9	26
32	A novel hydrazide Schiff base self-assembled nanoprobe for selective detection of human serum albumin and its applications in renal disease surveillance. Journal of Materials Chemistry B, 2020, 8, 8346-8355.	5.8	26
33	Synergistic and Diminutive Effects between Regium and Aerogen Bonds. ChemPhysChem, 2020, 21, 2426-2431.	2.1	17
34	Effect of carbon hybridization in C—F bond as an electron donor in triel bonds. Journal of Chemical Physics, 2020, 153, 074304.	3.0	6
35	Reliable Comparison of Pnicogen, Chalcogen, and Halogen Bonds in Complexes of 6-OXF2-Fulvene (X =) Tj ETQq1	1.0.7843 3.6	14 rgBT /O∨ 8
36	Modulation engineering of <i>in situ</i> cathodic activation of FeP _x based on W-incorporation for the hydrogen evolution reaction. Nanoscale, 2020, 12, 12364-12373.	5.6	11

#	Article	IF	CITATIONS
37	Bioinspired surface with special wettability for liquid transportation and separation. Sustainable Materials and Technologies, 2020, 25, e00175.	3.3	15
38	Complexes of HArF and AuX (X = F, Cl, Br, I). Comparison of Hâ€bonds, halogen bonds, Fâ€shared bonds and covalent bonds. Applied Organometallic Chemistry, 2020, 34, e5891.	3.5	6
39	Is the Fourier Transform Infrared Free-OH Band of <i>t</i> Butanol Only from Free OHs? Case Studies on the Binary Systems of the Alcohol with CCl ₄ and CHCl ₃ . Journal of Physical Chemistry A, 2020, 124, 6177-6185.	2.5	17
40	Xeâ< chalcogen aerogen bond. Effect of substituents and size of chalcogen atom. Physical Chemistry Chemical Physics, 2020, 22, 4115-4121.	2.8	11
41	The Ï€â€hole tetrel bond between <scp>X₂TO</scp> and <scp>CO₂</scp> : Substituent effects and its potential adsorptivity for <scp>CO₂</scp> . International Journal of Quantum Chemistry, 2020, 120, e26251.	2.0	15
42	Competition between σ-hole pnicogen bond and π-hole tetrel bond in complexes of CF ₂ =CFZH ₂ (Z = P, As, and Sb). Molecular Physics, 2019, 117, 251-259.	1.7	15
43	Coinage-Metal Bond between [1.1.1]Propellane and M2/MCl/MCH3 (M = Cu, Ag, and Au): Cooperativity and Substituents. Molecules, 2019, 24, 2601.	3.8	14
44	The ability of a tetrel bond to transition a neutral amino acid into a zwitterion. Chemical Physics Letters, 2019, 731, 136584.	2.6	9
45	Systematic study of the substitution effect on the tetrel bond between 1,4-diazabicyclo[2.2.2]octane and TH ₃ X. RSC Advances, 2019, 9, 18459-18466.	3.6	6
46	Coinage metal dimers as the noncovalent interaction acceptors: study of the Ïf-lump interactions. Physical Chemistry Chemical Physics, 2019, 21, 21152-21161.	2.8	11
47	A bioinspired hybrid membrane with wettability and topology anisotropy for highly efficient fog collection. Journal of Materials Chemistry A, 2019, 7, 124-132.	10.3	93
48	Comparison between Hydrogen and Halogen Bonds in Complexes of 6â€OXâ€Fulvene with Pnicogen and Chalcogen Electron Donors. ChemPhysChem, 2019, 20, 1978-1984.	2.1	16
49	A dual functional turn-on non-toxic chemosensor for highly selective and sensitive visual detection of Mg ²⁺ and Zn ²⁺ : the solvent-controlled recognition effect and bio-imaging application. Analyst, The, 2019, 144, 4024-4032.	3.5	53
50	Tetrel Bond between 6-OTX3-Fulvene and NH3: Substituents and Aromaticity. Molecules, 2019, 24, 10.	3.8	26
51	Synergistic and diminutive effects between triel bond and regium bond: Attractive interactions between ï€â€hole and Ïfâ€hole. Applied Organometallic Chemistry, 2019, 33, e4806.	3.5	25
52	Comparison of Ïfâ€hole and Ï€â€hole tetrel bonds in complexes of borazine with TH ₃ F and F ₂ TO/H ₂ TO (T = C, Si, Ge). International Journal of Quantum Chemistry, 2019 119, e25910.	, 2.0	19
53	A high performance 2-hydroxynaphthalene Schiff base fluorescent chemosensor for Al3+ and its applications in imaging of living cells and zebrafish in vivo. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 31-38.	3.9	60
54	Carbene triel bonds between TrR 3 (Tr = B, Al) and Nâ€heterocyclic carbenes. International Journal of Quantum Chemistry, 2019, 119, e25867.	2.0	27

Huı-Lı Xu

#	Article	IF	CITATIONS
55	Comparison of Ïfâ€fÏ€â€Hole Tetrel Bonds between TH ₃ F/F ₂ TO and H ₂ CX (X=O, S, Se). ChemPhysChem, 2019, 20, 627-635.	2.1	28
56	Effect of Magnesium Bond on the Competition Between Hydrogen and Halogen Bonds and the Induction of Proton and Halogen Transfer. ChemPhysChem, 2018, 19, 1456-1464.	2.1	11
57	Highly selective and sensitive turn-on fluorescent sensor for detection of Al3+ based on quinoline-base Schiff base. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 195, 157-164.	3.9	82
58	Nature of MoH···I bonds in Cp ₂ Mo(L)H···I ≡Câ€R Complexes (L=H, CN, PPh _{2Applied Organometallic Chemistry, 2018, 32, e4258.}	b>,) Tj ET(3.5	Qq0 0 0 rgB ⁻ 4
59	Comparison for σ-hole and π-hole tetrel-bonded complexes involving F 2 C CFTF 3 (T C, Si, and Ge): Substitution, hybridization, and solvation effects. Journal of Fluorine Chemistry, 2018, 207, 38-44.	1.7	16
60	Abnormal Tetrel Bonds between Formamidine and TH ₃ F: Substituent Effects. ChemistrySelect, 2018, 3, 2842-2849.	1.5	9
61	Theoretical assessing on the coordination mode and bonding in heteronuclear groupâ€13 dimetallocene. International Journal of Quantum Chemistry, 2018, 118, e25461.	2.0	1
62	Comparison for σ-hole and π-hole tetrel-bonded complexes involving cyanoacetaldehyde. Molecular Physics, 2018, 116, 222-230.	1.7	22
63	The Ï€â€Tetrel Bond and its Influence on Hydrogen Bonding and Proton Transfer. ChemPhysChem, 2018, 19, 736-743.	2.1	46
64	Understanding the effects of vicinal carbon substituents and configuration on organofluorine hydrogen-bonding interaction. RSC Advances, 2018, 8, 38980-38986.	3.6	3
65	Comparison of halide donators based on pi···M (M = Cu, Ag, Au), pi···Ĥ and pi···halogen bonds Chemistry Accounts, 2018, 137, 1.	. Theoreti 1.4	ငရွ၊
66	Carbon Excess C ₃ N: A Potential Candidate as Li-Ion Battery Material. ACS Applied Materials & Interfaces, 2018, 10, 37135-37141.	8.0	44
67	Triel–hydride triel bond between ZX ₃ (Z = B and Al; X = H and Me) and THMe ₃ (T) Tj E	TQq1 1 0.	.784314 rgB 14
68	Comparative Strengths of Tetrel, Pnicogen, Chalcogen, and Halogen Bonds and Contributing Factors. Molecules, 2018, 23, 1681.	3.8	69
69	Cooperative effects between π-hole triel and π-hole chalcogen bonds. RSC Advances, 2018, 8, 26580-26588.	3.6	33
70	Tetrel bonds between PhSiF ₃ /PhTH ₃ (T = Si, Ge, Sn) and H ₃ ZO (Z e25660.	=â€% 2.0	‰N,) Tj ETQ 4
71	Nonlinear optical properties of aluminum nitride nanotubes doped by excess electron: a first principle study. Journal of Molecular Modeling, 2018, 24, 205.	1.8	7
72	Dual function of the boron center of BH(CO)2/BH(N2)2 in halogen- and triel-bonded complexes with hypervalent halogens. Journal of Molecular Graphics and Modelling, 2018, 84, 118-124.	2.4	8

#	Article	IF	CITATIONS
73	Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF ₃ and furanTF ₃ (T = C, Si, and Ge) with NH ₃ . Physical Chemistry Chemical Physics, 2017, 19, 5550-5559.	2.8	98
74	Interplay between the Ïf-tetrel bond and Ïf-halogen bond in PhSiF ₃ â< ⁻ 4-iodopyridineâ< ⁻ N-base. RSC Advances, 2017, 7, 21713-21720.	3.6	26
75	Carbene tetrel-bonded complexes. Structural Chemistry, 2017, 28, 823-831.	2.0	47
76	Comparison of hydrogen and halogen bonds between dimethyl sulfoxide and hypohalous acid: competition and cooperativity. Molecular Physics, 2017, 115, 1614-1623.	1.7	17
77	Regulation of coin metal substituents and cooperativity on the strength and nature of tetrel bonds. RSC Advances, 2017, 7, 46321-46328.	3.6	20
78	The ground and excited-state electronic structures of sandwich compounds Cp2(ME)2 contain an (ME)2 four-membered ring (Cp = C5H5; M = Ni, Pd, Pt; E = O, S, Se, Te). New Journal of Chemistry, 2017, 41, 12028-12034.	2.8	3
79	The insertion and H2 elimination reactions of H2GeFMgF germylenoid with RH (R = Cl, SH, PH2). Russian Journal of Physical Chemistry A, 2017, 91, 1660-1668.	0.6	2
80	Comparison of σâ€Hole and Ï€â€Hole Tetrel Bonds Formed by Pyrazine and 1,4â€Dicyanobenzene: The Interplay between Anion–π and Tetrel Bonds. ChemPhysChem, 2017, 18, 2442-2450.	2.1	38
81	Prominent enhancing effects of substituents on the strength of π···σâ€hole tetrel bond. International Journal of Quantum Chemistry, 2017, 117, e25448.	2.0	21
82	Intramolecular Siâ‹â‹ô Tetrel Bonding: Tuning of Substituents and Cooperativity. ChemistrySelect, 2017, 2 11104-11112.	2. '1.5	8
83	Origin of selenium–gold interaction in F2CSeâ <auy (y="CN," and="" br,="" ch3):="" cl,="" effects.<br="" f,="" oh,="" synergistic="">Journal of Chemical Physics, 2016, 144, 114306.</auy>	3.0	7
84	Tetrel bond of pseudohalide anions with XH3F (X = C, Si, Ge, and Sn) and its role in SN2 reaction. Journal of Chemical Physics, 2016, 145, 224310.	3.0	68
85	Influence of the protonation of pyridine nitrogen on pnicogen bonding: competition and cooperativity. Physical Chemistry Chemical Physics, 2016, 18, 11348-11356.	2.8	16
86	Novel Zn(<scp>ii</scp>)-thiazolone-based solid fluorescent chemosensors: naked-eye detection for acid/base and toluene. RSC Advances, 2016, 6, 52310-52317.	3.6	3
87	Theoretical prediction on the addition reaction of germylenoid H ₂ GeFMgF with ethylene. Journal of Theoretical and Computational Chemistry, 2016, 15, 1650022.	1.8	4
88	Structures of the germylenoid H2GeZnCl2 and its addition reactions with ethylene. Structural Chemistry, 2016, 27, 1819-1829.	2.0	5
89	Comparison of tetrel bonds and halogen bonds in complexes of DMSO with ZF ₃ X (Z = C) Tj ETQq1 1	0.784314 3.6	4 rgBT /Ove
	Modulating the strength of tatral banding through bandlium banding. Journal of Malesular		

1.8 28

#	Article	IF	CITATIONS
91	Dinuclear first-row transition metal–(C8Me6)2complexes: metal–metal and metal–ligand bonds determined by the d electron configuration of the metal atom. New Journal of Chemistry, 2016, 40, 1988-1996.	2.8	9
92	Theoretical study of the cooperative effects between the triel bond and the pnicogen bond in BF3···NCXH2··Ŷ (X = P, As, Sb; Y = H2O, NH3) complexes. Journal of Molecular Modeling, 2016, 22, 10.	1.8	29
93	Comparison of hydrogen, halogen, and tetrel bonds in the complexes of HArF with YH ₃ X (X = halogen, Y = C and Si). RSC Advances, 2016, 6, 19136-19143.	3.6	28
94	Tetrel bonds between PySiX3 and some nitrogenated bases: Hybridization, substitution, and cooperativity. Journal of Molecular Graphics and Modelling, 2016, 65, 35-42.	2.4	36
95	The aerogen–Ĩ€ bonds involving ï€ systems. Chemical Physics Letters, 2016, 651, 50-55.	2.6	33
96	Resveratrol Ameliorates Diabetes-Induced Cardiac Dysfunction Through AT1R-ERK/p38 MAPK Signaling Pathway. Cardiovascular Toxicology, 2016, 16, 130-137.	2.7	57
97	Complicated synergistic effects between metal–π interaction and halogen bonding involving MCCX. RSC Advances, 2015, 5, 105160-105168.	3.6	6
98	Influence of substituents on the nature of metalâ<ï€ interaction and its cooperativity with halogen bond. Journal of Chemical Physics, 2015, 143, 054308.	3.0	14
99	Theoretical prediction on the insertion reactions of the germylenoid H2GeLiF with GeH3X (X = F, Cl,) Tj ETQq1 1	0.784314 0.6	rgǥT /Overlo
100	Monolayer Ti ₂ CO ₂ : A Promising Candidate for NH ₃ Sensor or Capturer with High Sensitivity and Selectivity. ACS Applied Materials & Interfaces, 2015, 7, 13707-13713.	8.0	524
101	Influence of F and Se substitution on the structures, stabilities and nature of the complexes between F ₂ CSe and HOX (X = F, Cl, Br, and I). RSC Advances, 2015, 5, 52667-52675.	3.6	7
102	How do organic gold compounds and organic halogen molecules interact? Comparison with hydrogen bonds. RSC Advances, 2015, 5, 12488-12497.	3.6	18
103	The dual role of pnicogen as Lewis acid and base and the unexpected interplay between the pnicogen bond and coordination interaction in H ₃ Nâ<¯FH ₂ Xâ<¯MCN (X = P and As; M = Cu, Ag,) T	[j E].@ q1 1	. 0 27 84314 rg
104	Novel pnicogen bonding interactions with silylene as an electron donor: covalency, unusual substituent effects and new mechanisms. Physical Chemistry Chemical Physics, 2015, 17, 9153-9160.	2.8	18
105	Interplay between Cation–π and Coinageâ€Metal–Oxygen Interactions: An Ab Initio Study and Cambridge Structural Database Survey. ChemPhysChem, 2015, 16, 1008-1016.	2.1	9
106	Structure and magnetic properties of open-ended silicon carbide nanotubes. RSC Advances, 2015, 5, 52754-52758.	3.6	2
107	Structure of H ₂ GeFMgF and its insertion reactions with RH (R = F , OH , NH ₂). Journal of Theoretical and Computational Chemistry, 2015, 14, 1550004.	1.8	6
108	Se···N Chalcogen Bond and Se···X Halogen Bond Involving F ₂ Câ•6e: Influence of Hybridization, Substitution, and Cooperativity. Journal of Physical Chemistry A, 2015, 119, 3518-3527.	2.5	45

30

#	Article	IF	CITATIONS
109	Theoretical prediction on H2 elimination reactions of H2GeLiF with RH (R = Cl, SH, and PH2). Russian Journal of Physical Chemistry A, 2015, 89, 812-817.	0.6	2
110	The band gap modulation of monolayer Ti ₂ CO ₂ by strain. RSC Advances, 2015, 5, 30438-30444.	3.6	82
111	Beryllium decorated armchair BC2N nanoribbons: coexistence of planar tetracoordinate carbon and nitrogen moieties. RSC Advances, 2015, 5, 73945-73950.	3.6	8
112	Abnormal synergistic effects between Lewis acid–base interaction and halogen bond in F ₃ B··•NCX··ÂNCM. Molecular Physics, 2015, 113, 3809-3814.	1.7	23
113	Theoretical study of synergistic effects between anion–i̇̃€ and metal–Lp interactions. RSC Advances, 2015, 5, 76912-76918.	3.6	5
114	Competition between halogen bond and hydrogen bond in complexes of superalkali Li ₃ S and halogenated acetylene XCCH (X = F, Cl, Br, and I). International Journal of Quantum Chemistry, 201 115, 99-105.	5,2.0	9
115	Competition and cooperativity between tetrel bond and chalcogen bond in complexes involving F2CX (X = Se and Te). Chemical Physics Letters, 2015, 620, 7-12.	2.6	103
116	Prediction and characterization of halogen bonds involving formamidine and its derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 138, 195-202.	3.9	5
117	Tetrel–Hydride Interaction between XH ₃ F (X = C, Si, Ge, Sn) and HM (M = Li, Na, BeH, MgH). Journal of Physical Chemistry A, 2015, 119, 2217-2224.	2.5	79
118	Halogen bonds with N-heterocyclic carbenes as halogen acceptors: a partially covalent character. Molecular Physics, 2014, 112, 3024-3032.	1.7	29
119	Non-additivity between substitution and cooperative effects in enhancing hydrogen bonds. Journal of Chemical Physics, 2014, 141, 244305.	3.0	11
120	Cooperative and Diminutive Effects of Pnicogen Bonds and Cation–π Interactions. ChemPhysChem, 2014, 15, 500-506.	2.1	38
121	A quantum chemical study of the structures, stability, and spectroscopy of halogen- and hydrogen-boned complexes between cyanoacetaldehyde and hypochlorous acids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 157-163.	3.9	7
122	Mutual influence between covalent and noncovalent interactions in H ₃ N–MCN–XF (X = H,) Tj E	TQq0 0 0 I	rgßT /Overlo
123	Influence of the nature of hydrogen halides and metal cations on the interaction types between borazine and hydrogen halides. Journal of Molecular Modeling, 2014, 20, 2089.	1.8	3
124	Novel non-covalent interactions involved with the Al ₁₃ M cluster (M = Li, Na, K, Cu, Ag,) Tj ETQq0 0 C) rgBT /Ov £7	erlock 10 Tf
125	Interplay between tetrel bonding and hydrogen bonding interactions in complexes involving F2XO (X=C and Si) and HCN. Computational and Theoretical Chemistry, 2014, 1050, 51-57.	2.5	55

¹²⁶ Is ĩ€ halogen bonding or lone pairâ< ĩ€ interaction formed between borazine and some halogenated compounds?. Physical Chemistry Chemical Physics, 2014, 16, 159-165.
2.8

Huı-Lı Xu

#	Article	IF	CITATIONS
127	Hydrogen bonding involved with superhalogen MX2NY: its influence on the structure and stability of the superhalogen. Molecular Physics, 2014, 112, 1947-1953.	1.7	3
128	Novel CXâ<ï€ halogen bonds in complexes of acetylene and its derivatives of Na and MPH3 (M=Cu, Ag, Au) with XCCF (X=Cl, Br, I). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 127, 10-15.	3.9	4
129	Substitution reactions of H2GeFBeF with RH (R = F, OH, NH2): A theoretical study. Russian Journal of Physical Chemistry A, 2014, 88, 1097-1102.	0.6	10
130	Complexes between hypohalous acids and phosphine derivatives. Pnicogen bond versus halogen bond versus hydrogen bond. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 271-277.	3.9	33
131	A σ-hole interaction with radical species as electron donors: does single-electron tetrel bonding exist?. Physical Chemistry Chemical Physics, 2014, 16, 11617-11625.	2.8	113
132	Is a MH (M = Be and Mg) radical a better electron donor in halogenâ€hydride interaction?: A theoretical comparison with HMH. International Journal of Quantum Chemistry, 2013, 113, 1293-1298.	2.0	6
133	Interplay between Metalâ‹â‹ï€ Interactions and Hydrogen Bonds: Some Unusual Synergetic Effects of Coinage Metals and Substituents. ChemPhysChem, 2013, 14, 3341-3347.	2.1	14
134	Spin-orbit ab initio investigation of the photodissociation of C2H5Br. Structural Chemistry, 2013, 24, 1591-1595.	2.0	2
135	Competition between hydrogen bonds and halogen bonds in complexes of formamidine and hypohalous acids. Journal of Molecular Modeling, 2013, 19, 4529-4535.	1.8	24
136	A new interaction mechanism of LiNH2 with MgH2: magnesium bond. Journal of Molecular Modeling, 2013, 19, 247-253.	1.8	24
137	Effect of superalkali substituents on the strengths and properties of hydrogen and halogen bonds. Journal of Molecular Modeling, 2013, 19, 1311-1318.	1.8	7
138	Competition of hydrogen, halogen, and pnicogen bonds in the complexes of HArF with XH2P (X=F, Cl,) Tj ETQq0	О <u>9</u> .ŗgBT /	Overlock 10
139	Influence of cooperativity on the frequency shift of the Ar–H stretch vibration in HArF complexes. Molecular Physics, 2013, 111, 497-504.	1.7	8
140	Influence of insertion of a noble gas atom on halogen bonding in H2O···XCCNgF and H3N···XCCNgF (XÂ=ÂCl and Br; NgÂ=ÂAr, Kr, and Xe) complexes. Structural Chemistry, 2013, 24, 25-31.	2.0	5
141	THEORETICAL INVESTIGATION ON THE INSERTION REACTIONS OF THE GERMYLENOID H₂GeLiF WITH RH (R = Cl , <fo Journal of Theoretical and Computational Chemistry, 2013, 12, 1350003.</fo 	nt 1 SH <td>ontx9P</td>	ont x 9 P
142	THEORETICAL STUDY ON HBeP- AND HPBe- ANIONS USING MULTICONFIGURATION SECOND-ORDER PERTURBATION THEORY. Journal of Theoretical and Computational Chemistry, 2012, 11, 1281-1288.	1.8	0
143	Competition between hydrogen bond and Ï <i>f</i> -hole interaction in SCS-HArF and SeCSe-HArF complexes. Molecular Physics, 2012, 110, 2969-2975.	1.7	2
144	Substitution, cooperative, and solvent effects on π pnicogen bonds in the FH2P and FH2As complexes. Journal of Molecular Modeling, 2012, 18, 4325-4332.	1.8	56

#	Article	IF	CITATIONS
145	Cooperative and substitution effects in enhancing strengths of halogen bonds in FClâ‹ ⁻ CNX complexes. Journal of Chemical Physics, 2012, 137, 084314.	3.0	28
146	Structures, properties and nature of DMSO–XY (XY=ClF and BrF) complexes: Redshift and blueshift of SO stretch. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 97, 600-605.	3.9	4
147	Competition of chalcogen bond, halogen bond, and hydrogen bond in SCSHOX and SeCSeHOX (X=Cl) Tj ETQq1	L 0.78431	4 rgBT /Ove
148	Mediated effect of substitutes on the strength of both types of hydrogen bonds formed between HNgF (Ng=He, Ar, Kr) and HCCX (X=H, F, Cl, Br, I, At, and CH3). Computational and Theoretical Chemistry, 2012, 992, 150-155.	2.5	4
149	Enhancement of Iodine–Hydride Interaction by Substitution and Cooperative Effects in NCX–NCI–HMY Complexes. ChemPhysChem, 2012, 13, 3997-4002.	2.1	23
150	Prediction and characterization of a chalcogen–hydride interaction with metal hybrids as an electron donor in F2CS–HM and F2CSe–HM (M = Li, Na, BeH, MgH, MgCH3) complexes. Physical Chemistry Chemical Physics, 2012, 14, 3025.	2.8	31
151	Pnicogen–Hydride Interaction between FH ₂ X (X = P and As) and HM (M = ZnH, BeH, MgH, Li,) Tj E	TQq1 1 0. 2.5	784314 rg <mark>8</mark> 75
152	Theoretical study on the insertion reactions of the germylenoid H2GeClMgCl with RH (R = F, OH, NH2). Russian Journal of Physical Chemistry A, 2012, 86, 1969-1973.	0.6	7
153	CASPT2 study on lowâ€lying states of HMgO and HOMg. International Journal of Quantum Chemistry, 2012, 112, 1209-1214.	2.0	3
154	Theoretical prediction on HAIS+ and HSAI+ cations using multiconfiguration second-order perturbation theory. International Journal of Quantum Chemistry, 2012, 112, 2499-2503.	2.0	2
155	Competitive interaction between halogen and hydrogen bonds in NH ₂ Brâ€HOX (X = F, Cl, and) Tj ET	Qq110.7	'84314 rg₿∏
156	Concerted Interaction between Pnicogen and Halogen Bonds in XClFH ₂ PNH ₃ (X=F, OH, CN, NC, and FCC). ChemPhysChem, 2012, 13, 1205-1212	2. ^{2.1}	124
157	Theoretical study on germylenoid H2GeFBeF. Structural Chemistry, 2012, 23, 867-871.	2.0	11
158	Competition between dihydrogen bond and beryllium bond in complexes between HBeH and HArF: A huge blue shift of distant HAr stretch. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 90, 135-140.	3.9	21
159	The structure, properties, and nature of C–Brâ∢F halogen bond involving HArF: Substitution, hybridization, and nonadditivity. Journal of Fluorine Chemistry, 2012, 135, 207-212.	1.7	7
160	The single-electron hydrogen, lithium, and halogen bonds with HBe, H2B, and H3C radicals as the electron donor: an ab initio study. Structural Chemistry, 2012, 23, 411-416.	2.0	24
161	What is the role of defects in single-walled carbon nanotubes for nonlinear optical property?. Journal of Materials Chemistry, 2011, 21, 8905.	6.7	16
162	CASPT2 study on low-lying states of HBS ⁺ and HSB ⁺ cations. Molecular Physics, 2011, 109, 2671-2677.	1.7	5

#	Article	CITATIONS
163	Prediction and characterization of HCCHâ‹â‹â‹AuX (X = OH, F, Cl, Br, CH3, CCH, CN, and NC) complexes: A Ï€ Au-bond. Journal of Chemical Physics, 2011, 135, 074304.	22

Some measures for making halogen bonds stronger than hydrogen bonds in H₂CSâ \in HOX (X) Tj ETQ_{2.8} 0 rgBT/Overlock 2.8 0 rgBT/Overlock

165	Influence of Hybridization and Cooperativity on the Properties of Au-Bonding Interaction: Comparison with Hydrogen Bonds. Journal of Physical Chemistry A, 2011, 115, 2853-2858.	2.5	26
166	The prominent enhancing effect and mechanism of the methyl group in the X···Y (X=O, S,) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 632
100	831-838.	1,7	0
167	The structure, properties, and nature of HArF–benzene complex: Redshift and blueshift of Ar–H stretch frequency and rare gas atomic number dependence of hydrogen bonds. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 84, 68-73.	3.9	7
168	CASPT2 study on lowâ€lying states of HBN and HNB radicals. International Journal of Quantum Chemistry, 2011, 111, 123-129.	2.0	3
169	Theoretical study on lowâ€lying states of HAlO ⁺ and HOAl ⁺ cations. International Journal of Quantum Chemistry, 2011, 111, 4373-4377.	2.0	2
170	The Prominent Enhancing Effect of the Cation–π Interaction on the Halogen–Hydride Halogen Bond in M ¹ â‹â‹â‹C ₆ H ₅ Xâ‹â‹â‹HM ² . ChemPhysChem, 201	1, ² 1,12,228	89 ⁴¹ 295.
171	The structure, properties, and nature of HArFâ€HOX (X = F, Cl, Br) complex: An <i>ab initio</i> study and an unusual short hydrogen bond. Journal of Computational Chemistry, 2011, 32, 2432-2440.	3.3	22
172	Interplay between halogen bond and lithium bond in MCN‣iCNâ€XCCH (M = H, Li, and Na; X = Cl, Br, and I) complex: The enhancement of halogen bond by a lithium bond. Journal of Computational Chemistry, 2011, 32, 3296-3303.	3.3	61
173	Competition and cooperativity between hydrogen bond and halogen bond in HNCâ√(HOBr)n and (HNC)nâ√HOBr (n=1 and 2) systems. Computational and Theoretical Chemistry, 2011, 963, 417-421.	2.5	31
174	A new unconventional halogen bond Cï£įX··Ĥï£įM between HCCX (X = Cl and Br) and HMH (M = Be and) Tj l	ЕТ <u><u>Ә</u>д0 0 0</u>	rgBT /Overlo
175	Competition between hydrogen bond and halogen bond in complexes of formaldehyde with hypohalous acids. Physical Chemistry Chemical Physics, 2010, 12, 6837.	2.8	92
176	Ab initio study of the cooperativity between NH···N and NH···C hydrogen bonds in H3N–HNC–HNC complex. Theoretical Chemistry Accounts, 2010, 127, 303-309.	1.4	32
177	Large blue shift of the H–Ar stretching frequency in hydrogen- and halogen-bonded complexes of HArF with dihalogen molecules. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 506-511.	3.9	16
178	Partially covalent nature and substitution non-additivity of Au-bonding in H2O–AuCH3 complex. Chemical Physics Letters, 2010, 498, 259-262.	2.6	11
179	Assignment on the X, A, B, C, and D states of the C ₆ H ₅ Br ⁺ cation based on highâ€level calculations. International Journal of Quantum Chemistry, 2010, 110, 2683-2688.	2.0	2

Prominent Effect of Alkali Metals in Halogen-Bonded Complex of MCCBrâ[^]NCMâ \in ² (M and Mâ \in ² = H, Li, Na, F,) Tj ETQq0 0 0 ggBT /Over 3^{+}_{3}

#	Article	IF	CITATIONS
181	Surprising enhancing effect of methyl group on the strength of Oâ‹⁻XF and Sâ‹⁻XF (X=Cl and Br) halogen bonds. Journal of Chemical Physics, 2010, 133, 114303.	3.0	29
182	Effect of substitution and cooperativity on the Cl–F blue shift in single-electron halogen-bonded H ₃ C ··· ClF complex. Molecular Physics, 2010, 108, 2021-2026.	1.7	11
183	Rare gas atomic number dependence of the hyperpolarizability for rare gas inserted fluorohydrides, HRgF (Rg=He, Ar, and Kr). Journal of Chemical Physics, 2009, 131, 044308.	3.0	14
184	Theoretical study on the π hydrogen-bonded complex between HArF and ethylene. Computational and Theoretical Chemistry, 2009, 897, 69-72.	1.5	3
185	Nonadditivity of methyl group in singleâ€electron hydrogen bond of methyl radicalâ€water complex. International Journal of Quantum Chemistry, 2009, 109, 605-611.	2.0	22
186	Theoretical study on HBC ^{â^'} and HCB ^{â^'} anions using multiconfiguration secondâ€order perturbation theory. International Journal of Quantum Chemistry, 2009, 109, 1074-1079.	2.0	4
187	Theoretical study on the cooperativity of hydrogen bonds in (HNC)2â⊄HF complexes. Computational and Theoretical Chemistry, 2009, 896, 112-115.	1.5	24
188	An unconventional halogen bond with carbene as an electron donor: An ab initio study. Chemical Physics Letters, 2009, 469, 48-51.	2.6	58
189	Ab Initio Study of Lithium-Bonded Complexes with Carbene as an Electron Donor. Journal of Physical Chemistry A, 2009, 113, 14156-14160.	2.5	43
190	Prediction and characterization of the HMgHâ⊄LiX (X = H, OH, F, CCH, CN, and NC) complexes: a lithium–hydride lithium bond. Physical Chemistry Chemical Physics, 2009, 11, 2402.	2.8	64
191	The effect of methyl group on the cooperativity between three types of hydrogen bond: OH···O, CH···O, and OH··Ĥ€. International Journal of Quantum Chemistry, 2008, 108, 558-566.	2.0	20
192	Cooperativity between the Dihydrogen Bond and the Nâ‹â‹â‹HC Hydrogen Bond in LiH–(HCN) _{<i>n</i>} Complexes. ChemPhysChem, 2008, 9, 1942-1946.	2.1	47
193	Cooperativity between the Halogen Bond and the Hydrogen Bond in H ₃ Na‹â‹â‹A‹â‹â‹â‹â‹	.HF Compl 2.1	exes 152
194	Spectroscopic and theoretical evidence for the cooperativity between red-shift hydrogen bond and blue-shift hydrogen bond in DMSO aqueous solutions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 211-215.	3.9	47
195	Solvent effect on the role of methyl groups in formation of O···HO hydrogen bond in dimethyl ether–methanol complex. Computational and Theoretical Chemistry, 2008, 862, 74-79.	1.5	11
196	Regulating Function of Methyl Group in Strength of CH···O Hydrogen Bond:  A High-Level Ab Initio Study. Journal of Physical Chemistry A, 2008, 112, 3985-3990.	2.5	45
197	Influence of Substitution, Hybridization, and Solvent on the Properties of Câ^'HO Single-Electron Hydrogen Bond in CH3â^'H2O Complex. Journal of Physical Chemistry A, 2008, 112, 5258-5263.	2.5	53
198	Excess Infrared Absorption Spectroscopy and its Applications in the Studies of Hydrogen Bonds in Alcohol-Containing Binary Mixtures. Applied Spectroscopy, 2008, 62, 166-170.	2.2	109

#	Article	IF	CITATIONS
199	Cooperativity between two types of hydrogen bond in H3C–HCN–HCN and H3C–HNC–HNC complexes. Journal of Chemical Physics, 2008, 128, 154102.	3.0	56
200	Cooperativity between OH···O and CH···O Hydrogen Bonds Involving Dimethyl Sulfoxideâ^'H ₂ Oâ^'H ₂ O Complex. Journal of Physical Chemistry A, 2007, 111, 10166-10169.	2.5	81
201	The Role of Methyl Groups in the Formation of Hydrogen Bond in DMSOâ^Methanol Mixtures. Journal of the American Chemical Society, 2006, 128, 1438-1439.	13.7	183
202	Comparison of π(BB)⋯M bond and luminescence behavior of <scp>group 11/12</scp> metal <scp>Ï€â€diborene</scp> complexes: Theoretical investigation. International Journal of Quantum Chemistry, 0, , .	2.0	0