
Christina Plainaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7891112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applications and usage of the real-time Neutron Monitor Database. Advances in Space Research, 2011, 47, 2210-2222.	2.6	105
2	Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003. Journal of Geophysical Research, 2005, 110, .	3.3	101
3	Clusters of cyclones encircling Jupiter's poles. Nature, 2018, 555, 216-219.	27.8	90
4	Modeling ground level enhancements: Event of 20 January 2005. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	79
5	Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	71
6	The Solar Orbiter Science Activity Plan. Astronomy and Astrophysics, 2020, 642, A3.	5.1	67
7	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	1.7	56
8	The role of sputtering and radiolysis in the generation of Europa exosphere. Icarus, 2012, 218, 956-966.	2.5	54
9	Juno observations of spot structures and a split tail in lo-induced aurorae on Jupiter. Science, 2018, 361, 774-777.	12.6	53
10	The H2O and O2 exospheres of Ganymede: The result of a complex interaction between the jovian magnetospheric ions and the icy moon. Icarus, 2015, 245, 306-319.	2.5	52
11	Water Ice Radiolytic O ₂ , H ₂ , and H ₂ O ₂ Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies. Journal of Geophysical Research E: Planets, 2017, 122, 1996-2012.	3.6	51
12	Neutral particle release from Europa's surface. Icarus, 2010, 210, 385-395.	2.5	42
13	Exospheric O2 densities at Europa during different orbital phases. Planetary and Space Science, 2013, 88, 42-52.	1.7	40
14	Ice Giant Systems: The scientific potential of orbital missions to Uranus and Neptune. Planetary and Space Science, 2020, 191, 105030.	1.7	39
15	Planetary space weather: scientific aspects and future perspectives. Journal of Space Weather and Space Climate, 2016, 6, A31.	3.3	38
16	Towards a Global Unified Model of Europa's Tenuous Atmosphere. Space Science Reviews, 2018, 214, 1.	8.1	36
17	THE GROUND-LEVEL ENHANCEMENT OF 2012 MAY 17: DERIVATION OF SOLAR PROTON EVENT PROPERTIES THROUGH THE APPLICATION OF THE NMBANGLE PPOLA MODEL. Astrophysical Journal, 2014, 785, 160.	4.5	33
18	The Venus nighttime atmosphere as observed by the VIRTISâ€M instrument. Average fields from the complete infrared data set. Journal of Geophysical Research E: Planets, 2014, 119, 837-849.	3.6	32

#	Article	IF	CITATIONS
19	First light observations of the solar wind in the outer corona with the Metis coronagraph. Astronomy and Astrophysics, 2021, 656, A32.	5.1	32
20	The comparative exploration of the ice giant planets with twin spacecraft: Unveiling the history of our Solar System. Planetary and Space Science, 2014, 104, 93-107.	1.7	31
21	Geant4 software application for the simulation of cosmic ray showers in the Earth's atmosphere. New Astronomy, 2014, 33, 26-37.	1.8	31
22	THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MESSENGER. Planetary and Space Science, 2015, 115, 102-109.	1.7	30
23	Mercury sodium exospheric emission as a proxy for solar perturbations transit. Scientific Reports, 2018, 8, 928.	3.3	30
24	Intense Ground-Level Enhancements of Solar Cosmic Rays During the Last Solar Cycles. Solar Physics, 2011, 269, 155-168.	2.5	29
25	Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956. Annales Geophysicae, 2005, 23, 2281-2291.	1.6	26
26	Space weather prediction by cosmic rays. Advances in Space Research, 2006, 37, 1141-1147.	2.6	26
27	Modeling the solar cosmic ray event of 13 December 2006 using ground level neutron monitor data. Advances in Space Research, 2009, 43, 474-479.	2.6	26
28	SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo. Space Science Reviews, 2021, 217, 11.	8.1	26
29	BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Science Reviews, 2021, 217, 1.	8.1	25
30	First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ€Juno Images. Journal of Geophysical Research E: Planets, 2018, 123, 1511-1524.	3.6	24
31	Two‥ear Observations of the Jupiter Polar Regions by JIRAM on Board Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006098.	3.6	24
32	A study of the ground level enhancement of 23 February 1956. Advances in Space Research, 2005, 35, 697-701.	2.6	23
33	Infrared observations of Io from Juno. Icarus, 2020, 341, 113607.	2.5	23
34	Ganymede's gravity, tides and rotational state from JUICE's 3GM experiment simulation. Planetary and Space Science, 2020, 187, 104902.	1.7	22
35	Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001–2014. Annales Geophysicae, 2016, 34, 1053-1068.	1.6	21
36	Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophysical Journal, 2020, 900, 74.	4.5	20

#	Article	IF	CITATIONS
37	Unexpected burst of solar activity recorded by neutron monitors during October–November 2003. Advances in Space Research, 2005, 35, 691-696.	2.6	19
38	Jupiter's Magnetosphere: Plasma Sources and Transport. Space Science Reviews, 2015, 192, 209-236.	8.1	19
39	Solar energetic particle interactions with the Venusian atmosphere. Annales Geophysicae, 2016, 34, 595-608.	1.6	19
40	Galactic cosmic ray spectral index: the case of Forbush decreases of March 2012. Astrophysics and Space Science, 2018, 363, 1.	1.4	18
41	Current state and perspectives of Space Weather science in Italy. Journal of Space Weather and Space Climate, 2020, 10, 6.	3.3	18
42	Moist convection drives an upscale energy transfer at Jovian high latitudes. Nature Physics, 2022, 18, 357-361.	16.7	18
43	Shortâ€ŧerm observations of doubleâ€peaked Na emission from Mercury's exosphere. Geophysical Research Letters, 2017, 44, 2970-2977.	4.0	17
44	Cassini-VIMS observations of Saturn's main rings: II. A spectrophotometric study by means of Monte Carlo ray-tracing and Hapke's theory. Icarus, 2019, 317, 242-265.	2.5	17
45	Coronal index as a solar activity index applied to space weather. Advances in Space Research, 2005, 35, 410-415.	2.6	16
46	A New Version of the Neutron Monitor Based Anisotropic GLE Model: Application to GLE60. Solar Physics, 2010, 264, 239-254.	2.5	16
47	Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006508.	3.6	16
48	Serendipitous infrared observations of Europa by Juno/JIRAM. Icarus, 2019, 328, 1-13.	2.5	15
49	Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM Lâ€Band Imager. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029450.	2.4	15
50	Loss rates of Europa× ³ s tenuous atmosphere. Planetary and Space Science, 2016, 130, 14-23.	1.7	14
51	On the Spatial Distribution of Minor Species in Jupiter's Troposphere as Inferred From Juno JIRAM Data. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006206.	3.6	14
52	Cosmic-Ray Variations During the Two Greatest Bursts of Solar Activity in the 23rd Solar Cycle. Solar Physics, 2004, 224, 345-358.	2.5	13
53	Solar activity and the associated ground level enhancements of solar cosmic rays during solar cycle 23. Astrophysics and Space Sciences Transactions, 2011, 7, 439-443.	1.0	13
54	Penetrating particle ANalyzer (PAN). Advances in Space Research, 2019, 63, 2672-2682.	2.6	13

#	Article	IF	CITATIONS
55	Neutron monitor asymptotic directions of viewing during the event of 13 December 2006. Advances in Space Research, 2009, 43, 518-522.	2.6	12
56	The influence of space environment on the evolution of Mercury. Icarus, 2014, 239, 281-290.	2.5	12
57	Volatiles and Refractories in Surface-Bounded Exospheres in the Inner Solar System. Space Science Reviews, 2021, 217, 61.	8.1	12
58	Investigation of the possible effects of comet Encke's meteoroid stream on the Ca exosphere of Mercury. Journal of Geophysical Research E: Planets, 2017, 122, 1217-1226.	3.6	11
59	H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM. Icarus, 2019, 329, 132-139.	2.5	11
60	Oscillations and Stability of the Jupiter Polar Cyclones. Geophysical Research Letters, 2021, 48, e2021GL094235.	4.0	11
61	The in-situ exploration of Jupiter's radiation belts. Experimental Astronomy, 2022, 54, 745-789.	3.7	11
62	The first Coronal Mass Ejection observed in both visible-light and UV H I Ly-alpha channels of the Metis Coronagraph on board Solar Orbiter. Astronomy and Astrophysics, 0, , .	5.1	11
63	GLEs as a Warning Tool for Radiation Effects on Electronics and Systems: A New Alert System Based on Real-Time Neutron Monitors. IEEE Transactions on Nuclear Science, 2007, 54, 1082-1088.	2.0	10
64	Exospheric Na distributions along the Mercury orbit with the THEMIS telescope. Icarus, 2021, 355, 114179.	2.5	10
65	Analytical model of Europa's O2 exosphere. Planetary and Space Science, 2016, 130, 3-13.	1.7	9
66	Space weather forecasting at the new Athens center: the recent extreme events of January 2005. IEEE Transactions on Nuclear Science, 2005, 52, 2307-2312.	2.0	8
67	Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 202, 200-209.	2.3	8
68	Turbulence Power Spectra in Regions Surrounding Jupiter's South Polar Cyclones From Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006096.	3.6	8
69	Mapping Io's Surface Composition With Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006522.	3.6	8
70	Observing planets and small bodies in sputtered high-energy atom fluxes. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	7
71	Photometric Modeling and VISâ€IR Albedo Maps of Dione From Cassiniâ€VIMS. Geophysical Research Letters, 2018, 45, 2184-2192.	4.0	7
72	Space weathering on near-Earth objects investigated by neutral-particle detection. Planetary and Space Science, 2009, 57, 384-392.	1.7	6

#	Article	IF	CITATIONS
73	Energetic neutral particles detection in the environment of Jupiter's icy moons: Ganymede's and Europa's neutral imaging experiment (GENIE). Planetary and Space Science, 2013, 88, 53-63.	1.7	6
74	Photometric Modeling and VISâ€IR Albedo Maps of Tethys From Cassiniâ€VIMS. Geophysical Research Letters, 2018, 45, 6400-6407.	4.0	6
75	Cosmic-ray flux predictions and observations for and with Metis on board Solar Orbiter. Astronomy and Astrophysics, 2021, 656, A15.	5.1	6
76	An empirical model of the daily evolution of the coronal index. Solar Physics, 2003, 218, 63-78.	2.5	5
77	Characterization of Mesoscale Waves in the Jupiter NEB by Jupiter InfraRed Auroral Mapper on board Juno. Astronomical Journal, 2018, 156, 246.	4.7	5
78	Juno/JIRAM: Planning and commanding activities. Advances in Space Research, 2020, 65, 598-615.	2.6	5
79	Preliminary estimation of the detection possibilities of Ganymede's water vapor environment with MAJIS. Planetary and Space Science, 2020, 191, 105004.	1.7	5
80	On the clouds and ammonia in Jupiter's upper troposphere from Juno JIRAM reflectivity observations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4892-4907.	4.4	5
81	Multiscale Features of the Near-Hermean Environment as Derived Through the Hilbert-Huang Transform. Frontiers in Physics, 2021, 9, .	2.1	4
82	lce giant system exploration within ESA's Voyage 2050. Experimental Astronomy, 2022, 54, 1015-1025.	3.7	4
83	On the Magnetosphereâ€lonosphere Coupling During the May 2021 Geomagnetic Storm. Space Weather, 2022, 20, .	3.7	4
84	Athens Neutron Monitor Data Processing Center – ANMODAP Center. Advances in Space Research, 2009, 44, 1237-1246.	2.6	3
85	Photometric modelling and VIS-IR albedo maps of Rhea from Cassini-VIMS. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 499, L62-L66.	3.3	3
86	Saturn's icy satellites investigated by Cassini - VIMS. V. Spectrophotometry. Icarus, 2022, 375, 114803.	2.5	3
87	Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
88	Exosphere generation of the Moon investigated through a high-energy neutral detector. Experimental Astronomy, 2011, 32, 37-49.	3.7	2
89	Cosmic ray events in the beginning of 2012. Journal of Physics: Conference Series, 2013, 409, 012206.	0.4	2
90	Derivation of relativistic SEP properties through neutron monitor data modeling. Journal of Physics: Conference Series, 2015, 632, 012076.	0.4	2

#	Article	IF	CITATIONS
91	Investigating the foF2 variations at the Ionospheric Observatory of Rome during different solar cycles minimums and levels of geomagnetic activity. Journal of Space Weather and Space Climate, 2020, 10, 52.	3.3	2
92	Climate Issues from the Planetary Perspective and Insights for the Earth. , 0, , 40-54.		1
93	The Penetrating particle ANalyzer (PAN) instrument for measurements of low energy cosmic rays. , 2019, , .		1
94	Estimation of the cosmic ray ionization in the Earth's atmosphere during GLE71. , 2016, , .		1
95	The new Athens Center applied to Space Weather Forecasting. AlP Conference Proceedings, 2006, , .	0.4	0
96	Jupiter's Magnetosphere: Plasma Sources and Transport. Space Sciences Series of ISSI, 2016, , 209-236.	0.0	0
97	Reconstruction of the magnetic connection from Mercury to the solar corona during enhancements in the solar proton fluxes at Mercury. Astronomy and Astrophysics, 0, , .	5.1	0