William A Sather

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7890750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of voltage-gated calcium channels by the ER calcium sensor STIM1. Current Opinion in Neurobiology, 2019, 57, 186-191.	4.2	8
2	Synaptic crosstalk conferred by a zone of differentially regulated Ca ²⁺ signaling in the dendritic shaft adjoining a potentiated spine. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13611-13620.	7.1	16
3	AKAP79/150 recruits the transcription factor NFAT to regulate signaling to the nucleus by neuronal L-type Ca ²⁺ channels. Molecular Biology of the Cell, 2019, 30, 1743-1756.	2.1	30
4	Synapse-to-Nucleus Communication through NFAT Is Mediated by L-type Ca2+ Channel Ca2+ Spike Propagation to the Soma. Cell Reports, 2019, 26, 3537-3550.e4.	6.4	57
5	Stac Proteins Suppress Ca ²⁺ -Dependent Inactivation of Neuronal I-type Ca ²⁺ Channels. Journal of Neuroscience, 2018, 38, 9215-9227.	3.6	39
6	STIM1 Ca 2+ Sensor Control of L-type Ca 2+ -Channel-Dependent Dendritic Spine Structural Plasticity and Nuclear Signaling. Cell Reports, 2017, 19, 321-334.	6.4	61
7	A novel substituted aminoquinoline selectively targets voltage-sensitive sodium channel isoforms and NMDA receptor subtypes and alleviates chronic inflammatory and neuropathic pain. European Journal of Pharmacology, 2016, 784, 1-14.	3.5	4
8	AKAP-Anchored PKA Maintains Neuronal L-type Calcium Channel Activity and NFAT Transcriptional Signaling. Cell Reports, 2014, 7, 1577-1588.	6.4	128
9	Ca 2+ /Calcineurin-Dependent Inactivation of Neuronal L-Type Ca 2+ Channels Requires Priming by AKAP-Anchored Protein Kinase A. Cell Reports, 2014, 7, 1410-1416.	6.4	55
10	Localized Calcineurin Confers Ca ²⁺ -Dependent Inactivation on Neuronal L-Type Ca ²⁺ Channels. Journal of Neuroscience, 2012, 32, 15328-15337.	3.6	52
11	Structure and Mechanism of Voltage-Gated Ion Channels. , 2012, , 383-408.		0
12	AKAP79/150 Anchoring of Calcineurin Controls Neuronal L-Type Ca2+ Channel Activity and Nuclear Signaling. Neuron, 2007, 55, 261-275.	8.1	303
13	A tctex1-Ca2+ channel complex for selective surface expression of Ca2+ channels in neurons. Nature Neuroscience, 2005, 8, 435-442.	14.8	24
14	Selective Permeability of Voltage-Gated Calcium Channels. , 2005, , 205-218.		4
15	Control of Ion Conduction in L-type Ca2+ Channels by the Concerted Action of S5–6 Regions. Biophysical Journal, 2003, 84, 1709-1719.	0.5	13
16	Permeation and Selectivity in Calcium Channels. Annual Review of Physiology, 2003, 65, 133-159.	13.1	239
17	Structure and Mechanism of Voltage-Gated Ion Channels. , 2001, , 455-477.		3
18	Permeant ion binding affinity in subconductance states of an Lâ€ŧype Ca 2+ channel expressed in Xenopus laevis oocytes. Journal of Physiology, 2000, 524, 19-36.	2.9	17

WILLIAM A SATHER

#	Article	IF	CITATIONS
19	Side Chain Orientation in the Selectivity Filter of a Voltage-gated Ca2+ Channel. Journal of Biological Chemistry, 2000, 275, 31778-31785.	3.4	38
20	Ion Interactions in the High-Affinity Binding Locus of a Voltage-Gated Ca2+ Channel. Journal of General Physiology, 2000, 116, 569-586.	1.9	27
21	The Eeee Locus Is the Sole High-Affinity Ca2+ Binding Structure in the Pore of a Voltage-Gated Ca2+ Channel. Journal of General Physiology, 2000, 116, 349-362.	1.9	47
22	Nonglutamate Pore Residues in Ion Selection and Conduction in Voltage-Gated Ca2+ Channels. Biophysical Journal, 1999, 77, 2575-2589.	0.5	24
23	Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron, 1995, 15, 1121-1132.	8.1	281
24	Structural basis of ion channel permeation and selectivity. Current Opinion in Neurobiology, 1994, 4, 313-323.	4.2	76
25	Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature, 1993, 366, 158-161.	27.8	596
26	Preferred antagonist binding state of the N-methyl-D-aspartate receptor: synthesis, pharmacology, and computer modeling of (phosphonomethyl)phenylalanine derivatives. Journal of Medicinal Chemistry, 1992, 35, 2551-2562.	6.4	19