List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7889341/publications.pdf Version: 2024-02-01

FEDERICA POLL

#	Article	IF	CITATIONS
1	Power scaling of normal-dispersion continuum generation using higher-order modes in microstructured optical fibers. Optics Letters, 2022, 47, 698.	3.3	Ο
2	Microfabrication of polymer microneedle arrays using two-photon polymerization. Journal of Photochemistry and Photobiology B: Biology, 2022, 229, 112424.	3.8	12
3	Thermo-optical numerical modal analysis of multicore fibers for high power lasers and amplifiers. Optical Fiber Technology, 2022, 70, 102857.	2.7	1
4	Heat Load Influence on Supermodes in Yb-Doped Four-Core Fibers. Journal of Lightwave Technology, 2021, 39, 263-269.	4.6	0
5	Scaling properties of guided acoustic-wave Brillouin scattering in single-mode fibers. Optics Express, 2021, 29, 15528.	3.4	6
6	Nanosecond pulsed fiber laser irradiation for enhanced zirconia crown adhesion: Morphological, chemical, thermal and mechanical analysis. Journal of Photochemistry and Photobiology B: Biology, 2021, 219, 112189.	3.8	6
7	Mode Phase Variation and Sensitivity to Thermal Load in Three-Core Optical Fibers. Journal of Lightwave Technology, 2020, 38, 2400-2405.	4.6	2
8	Thermo-optic instabilities in asymmetric dual-core amplifiers. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1494.	2.1	0
9	Guidance properties and thermal effects in 9-core Yb-doped fiber for high power applications. , 2019, , .		0
10	Modal Properties of Yb-Doped 4-Core Fibers under Heat Load. , 2019, , .		0
11	Thermal Effects on Modal Properties of Dual-Core Yb-Doped Fibers. Journal of Lightwave Technology, 2019, 37, 1075-1083.	4.6	8
12	Static and dynamic mode instabilities in dual-core fiber amplifiers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 757.	2.1	11
13	Guidance properties and phase shift of a 9-core fiber amplifier for high power operation in presence of consistent thermal load. , 2019, , .		0
14	Hard dental tissues laser welding: a new help for fractured teeth? A preliminary <i>ex vivo</i> study. Laser Therapy, 2018, 27, 105-110.	0.3	1
15	Theory of thermo-optic instabilities in dual-core fiber amplifiers. Optics Letters, 2018, 43, 4775.	3.3	12
16	Disilicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis. Bioengineering, 2018, 5, 10.	3.5	8
17	Design of an amplifier model accounting for thermal effect in fully aperiodic large pitch fibers. , 2018, , .		0
18	Ultrastructural analysis of dental ceramic surface processed by a 1070 nm fiber laser. , 2018, , .		0

#	Article	IF	CITATIONS
19	Inner cladding influence on mode interaction in symmetry-free photonic crystal fibers under heat load. Optical and Quantum Electronics, 2017, 49, 1.	3.3	0
20	Gain competition in Yb-doped symmetry-free photonic crystal fibers under severe heat load. , 2017, , .		0
21	1070 nm Fiber laser and soft tissues oral surgery: Ex vivo study with FBG temperature recording. , 2017, , .		0
22	Improved performances of photonic crystal fibers for high power laser operation. , 2017, , .		0
23	Thermal induced dynamics of gain competition in Yb-doped Symmetry-Free Photonic Crystal Fibers. , 2017, , .		Ο
24	Mode discrimination criterion for effective differential amplification in Yb-doped fiber design for high power operation. Optics Express, 2017, 25, 29013.	3.4	14
25	Use of 1070 nm fiber lasers in oral surgery: preliminary <i>ex vivo</i> study with FBG temperature monitoring. Laser Therapy, 2017, 26, 311-318.	0.3	3
26	Four different diode lasers comparison on soft tissues surgery: a preliminary <i>ex vivo</i> study. Laser Therapy, 2016, 25, 105-114.	0.3	21
27	Modelling of thermal effects and gain competition in Yb-doped large mode area photonic crystal fibers. , 2016, , .		Ο
28	Thermal effects and gain competition in Yb-doped large mode area fibers for high-power applications. , 2016, , .		0
29	Inner cladding influence on large mode area photonic crystal fiber properties under severe heat load. , 2016, , .		1
30	Full-vector modeling of thermally-driven gain competition in Yb-doped reduced symmetry photonic-crystal fiber. Optical and Quantum Electronics, 2016, 48, 1.	3.3	7
31	Analysis of the Modal Content Into Large-Mode-Area Photonic Crystal Fibers Under Heat Load. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 323-330.	2.9	26
32	Yb-doped large mode area fibers with reduced cladding symmetry. Proceedings of SPIE, 2015, , .	0.8	0
33	Large mode area aperiodic fiber designs for robust singlemode emission under high thermal load. , 2015, , .		2
34	Highly nonlinear chalcogenide suspended-core fibers for applications in the mid-infrared. Proceedings of SPIE, 2015, , .	0.8	0
35	Chalcogenide suspended-core fibers for supercontinuum generation in the mid-infrared. , 2015, , .		2
36	Dispersion Engineering of Highly Nonlinear Chalcogenide Suspended-Core Fibers. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	25

#	Article	IF	CITATIONS
37	Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier. Optics Express, 2015, 23, 18638.	3.4	17
38	Tm-doped Rod-type Photonic Crystal Fibers with Symmetry-Free Cladding. , 2014, , .		0
39	Single-Mode Propagation in Yb-Doped Large Mode Area Fibers With Reduced Cladding Symmetry. IEEE Photonics Technology Letters, 2014, 26, 2454-2457.	2.5	15
40	Double-cladding photonic crystal fibers with reduced cladding symmetry for Tm-doped lasers. Proceedings of SPIE, 2014, , .	0.8	1
41	Thermo-optical effects in large mode area photonic crystal fibers. , 2014, , .		0
42	Comparison of thermally-induced single-mode regime changes in Yb-doped large mode area photonic crystal fibers. , 2013, , .		2
43	Microstructured optical fiber Bragg grating sensor for DNA detection. Proceedings of SPIE, 2013, , .	0.8	1
44	Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers. Proceedings of SPIE, 2013, , .	0.8	2
45	Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths. Optics Express, 2012, 20, 6010.	3.4	18
46	Thermal effects in Yb-doped double-cladding Distributed Modal Filtering rod-type fibers. , 2012, , .		0
47	Thermal-induced refractive index change effects on distributed modal filtering properties of rod-type photonic crystal fibers. , 2012, , .		1
48	Anti-symmetric hybrid photonic crystal fibers with enhanced filtering and bending properties. , 2012, , .		0
49	Avoided-crossing based modal cut-off analysis of 19-cell double-cladding photonic crystal fibers. Proceedings of SPIE, 2012, , .	0.8	1
50	Ytterbium-doped large-mode-area photonic crystal fiber amplifier with gain shaping for use at long wavelengths. Proceedings of SPIE, 2012, , .	0.8	0
51	Single-Mode Design Guidelines for 19-Cell Double-Cladding Photonic Crystal Fibers. Journal of Lightwave Technology, 2012, 30, 1909-1914.	4.6	9
52	Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber. Journal of Lightwave Technology, 2012, 30, 3494-3499.	4.6	37
53	Cut-off analysis of 19-cell Yb-doped double-cladding rod-type photonic crystal fibers. Optics Express, 2011, 19, 9896.	3.4	27
54	Long period grating-based fiber optic sensor for label-free DNA detection. , 2011, , .		3

4

#	Article	IF	CITATIONS
55	Recent status and prospects of the EU-funded ALPINE project. Proceedings of SPIE, 2011, , .	0.8	1
56	Hybrid large mode area photonic crystal fiber for distributed spectral filtering and single-mode operation. Proceedings of SPIE, 2011, , .	0.8	0
57	Single-mode regime of 19-cell Yb-doped double-cladding photonic crystal fibers. , 2011, , .		1
58	Effective area of a bent polarizing double-clad Yb-doped photonic crystal fiber. , 2011, , .		0
59	Double Tilted Fiber Bragg Grating for label-free DNA detection. , 2011, , .		1
60	Octagonal Large-Mode-Area Leakage Channel Fiber with Reduced Bending Loss. , 2010, , .		0
61	Higher-order mode suppression in rod-type photonic crystal fibers with sectioned doping and enlarged core. , 2010, , .		0
62	Guiding properties of kagome-lattice hollow-core fibers. , 2010, , .		1
63	DNA recognition by peptide nucleic acid-modified PCFs: from models to real samples. , 2010, , .		1
64	Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers. Optics Express, 2010, 18, 27197.	3.4	18
65	Toward A Highly Specific DNA Biosensor: PNA-Modified Suspended-Core Photonic Crystal Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 967-972.	2.9	72
66	Bending-induced single-mode behaviour of a polarizing double-clad Yb-doped photonic crystal fiber. , 2010, , .		2
67	High brilliance fiber lasers for the scribing of photovoltaic modules. , 2009, , .		3
68	Dynamic behaviour of an Ytterbium-doped rodlike PCF laser. , 2009, , .		0
69	Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping. Proceedings of SPIE, 2009, , .	0.8	1
70	Single-Mode Regime in Large-Mode-Area Rare-Earth-Doped Rod-Type PCFs. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 54-60.	2.9	19
71	Suppression of Higher-Order Modes by Segmented Core Doping in Rod-Type Photonic Crystal Fibers. Journal of Lightwave Technology, 2009, 27, 4935-4942.	4.6	14
72	Design of all-solid leakage channel fibers with large mode area and low bending loss. Optics Express, 2009, 17, 4913.	3.4	38

#	Article	IF	CITATIONS
73	Guided mode gain competition in Yb-doped rod-type photonic crystal fibers. , 2009, , .		Ο
74	Air-suspended solid-core fibers for sensing. , 2009, , .		3
75	Yb-doped rod-type photonic crystal fibers for single-mode amplification. , 2009, , .		О
76	Guiding Properties of Silica/Air Hollow-Core Bragg Fibers. Journal of Lightwave Technology, 2008, 26, 1877-1884.	4.6	9
77	Numerical Modeling of S-Band EDFA Based on Distributed Fiber Loss. Journal of Lightwave Technology, 2008, 26, 2168-2174.	4.6	17
78	Finite-element based photonic crystal fiber analysis: From solid to hollow core fibers. , 2008, , .		0
79	Fundamental and high-order mode bending loss in leakage channel fibers. , 2008, , .		0
80	All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application. IEEE Sensors Journal, 2008, 8, 1280-1286.	4.7	35
81	Single air-hole ring polygonal photonic crystal fibers with reduced bending loss and field distortion. , 2008, , .		1
82	Guided mode cutoff in rare-earth doped rod-type PCFs. , 2008, , .		1
83	Bio-sensor based on a hollow-core Bragg fiber. , 2008, , .		1
84	Doped fiber lasers: From telecom to industrial applications. , 2008, , .		3
85	Tunability of erbium-doped fibre ring laser based on bending loss of active fibre. Electronics Letters, 2007, 43, 500.	1.0	3
86	All-silica double-pass S+C+L band EDFA. Electronics Letters, 2007, 43, 329.	1.0	4
87	Analysis of the dependence of the guided-mode field distribution on the silica bridges in hollow-core Bragg fibers. , 2007, , .		Ο
88	Simultaneous liquid level and refractive index measurements with a POF-based sensor. , 2007, , .		3
89	Surface mode free and highly birefringent single-mode hollow core photonic bandgap fibers. , 2007, , .		0
90	Confinement loss spectral behavior in hollow-core Bragg fibers. Optics Letters, 2007, 32, 3164.	3.3	6

#	Article	IF	CITATIONS
91	Spectral Behavior of Integrated Antiresonant Reflecting Hollow-Core Waveguides. Journal of Lightwave Technology, 2007, 25, 2599-2604.	4.6	1
92	Photonic Crystal Fibers. , 2007, , .		26
93	Spectral Behavior and Guided-to-Surface Mode Transition of Arch-Shaped Hollow-Core Waveguides. , 2007, , .		0
94	Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice. Optical and Quantum Electronics, 2007, 38, 903-912.	3.3	7
95	Square-Lattice Photonic Crystal Fiber Cutoff Properties. , 2006, , .		2
96	Modified Honeycomb Photonic Bandgap Fiber Effectively Single-Mode Regime: A Numerical Analysis. , 2006, , .		0
97	Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers. IEEE Photonics Technology Letters, 2006, 18, 508-510.	2.5	42
98	Polarization splitter based on a square-lattice photonic-crystal fiber. Optics Letters, 2006, 31, 441.	3.3	68
99	S-band depressed-cladding erbium-doped fiber amplifier with double-pass configuration. Optics Letters, 2006, 31, 3228.	3.3	26
100	From S- to C-band amplification in a depressed-cladding EDFA. , 2006, , .		0
101	Scanning Near-Field Microscopy of Photonic Crystal Fibers. , 2006, , .		0
102	Low-cost level and pressure plastic optical fiber sensor. , 2006, 6189, 559.		3
103	Nonlinear photonic crystal fiber with high birefringence made of silicate glass. , 2006, , .		0
104	Highly Birefringent Photonic Crystal Fiber Made of Silicate Glass. , 2006, , .		0
105	Optical parametric amplification in dispersion-flattened highly nonlinear photonic crystal fibers. , 2005, , .		4
106	New design of single-mode large-mode-area photonic crystal fibers. , 2005, 5950, 209.		5
107	Scanning near-field optical microscope for characterization of single mode fibers. , 2005, , .		0

108 Gain flatness in photonic crystal fiber Raman amplifiers. , 2005, , .

1

#	Article	IF	CITATIONS
109	All-plastic optical-fiber level sensor. Microwave and Optical Technology Letters, 2005, 46, 520-522.	1.4	26
110	Optical parametric amplification in all-silica triangular-core photonic crystal fibers. Applied Physics B: Lasers and Optics, 2005, 81, 251-255.	2.2	19
111	Electromagnetic field confined and tailored with a few air holes in a photonic-crystal fiber. Applied Physics B: Lasers and Optics, 2005, 81, 409-414.	2.2	7
112	Design of photonic-crystal and wire waveguide interface. Journal of Lightwave Technology, 2005, 23, 2740-2745.	4.6	9
113	Single-mode regime of square-lattice photonic crystal fibers. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 1655.	1.5	52
114	Multipump flattened-gain Raman amplifiers based on photonic-crystal fibers. IEEE Photonics Technology Letters, 2005, 17, 2556-2558.	2.5	6
115	Numerical design for efficiently coupling conventional and photonic-crystal waveguides. Microwave and Optical Technology Letters, 2004, 42, 196-199.	1.4	8
116	Tailoring of Flattened Dispersion in Highly Nonlinear Photonic Crystal Fibers. IEEE Photonics Technology Letters, 2004, 16, 1065-1067.	2.5	156
117	Design of Erbium-Doped Triangular Photonic-Crystal-Fiber-Based Amplifiers. IEEE Photonics Technology Letters, 2004, 16, 2027-2029.	2.5	37
118	Dispersion properties of square-lattice photonic crystal fibers. Optics Express, 2004, 12, 941.	3.4	107
119	Modeling of Photonic Crystal Fiber Raman Amplifiers. Journal of Lightwave Technology, 2004, 22, 1707-1713.	4.6	26
120	Amplification properties of Er/sub 3+/ -doped photonic crystal fibers. Journal of Lightwave Technology, 2003, 21, 782-788.	4.6	64
121	Study of raman amplification properties in triangular photonic crystal fibers. Journal of Lightwave Technology, 2003, 21, 2247-2254.	4.6	37
122	Characterization of microstructured optical fibers for wideband dispersion compensation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 1958.	1.5	75
123	Polarization selective coupling in three-core holey fibers. , 0, , .		0
124	In- and out-coupling of light in photonic-crystal and conventional dielectric waveguides of arbitrary width. , 0, , .		0
125	Cutoff properties of large-mode-area photonic crystal fibers. , 0, , .		2
126	Bending influence on depressed-cladding EDFA gain spectrum. , 0, , .		2

126 Bending influence on depressed-cladding EDFA gain spectrum. , 0, , .

#	Article	IF	CITATIONS
127	Air-guiding photonic crystal fibers with modified honeycomb lattice. , 0, , .		7