David Vallenet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/788623/publications.pdf

Version: 2024-02-01

77 papers 10,475 citations

45 h-index 76900 74 g-index

85 all docs 85 docs citations

85 times ranked 12383 citing authors

#	Article	IF	CITATIONS
1	Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 2006, 440, 790-794.	27.8	1,075
2	Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths. PLoS Genetics, 2009, 5, e1000344.	3. 5	1,005
3	Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii. PLoS Genetics, 2006, 2, e7.	3.5	677
4	Legumes Symbioses: Absence of Nod Genes in Photosynthetic Bradyrhizobia. Science, 2007, 316, 1307-1312.	12.6	557
5	MicroScopeâ€"an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Research, 2013, 41, D636-D647.	14.5	406
6	MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Research, 2006, 34, 53-65.	14.5	375
7	Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 2005, 15, 1325-1335.	5 . 5	367
8	Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Research, 2006, 17, 7-15.	5 . 5	352
9	From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology (United Kingdom), 2009, 155, 1758-1775.	1.8	317
10	Genome Sequences of Escherichia coli B strains REL606 and BL21(DE3). Journal of Molecular Biology, 2009, 394, 644-652.	4.2	316
11	Comparative Analysis of Acinetobacters: Three Genomes for Three Lifestyles. PLoS ONE, 2008, 3, e1805.	2.5	315
12	Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Research, 2004, 32, 5766-5779.	14.5	308
13	A complete collection of singleâ€gene deletion mutants of <i>Acinetobacter baylyi</i> ADP1. Molecular Systems Biology, 2008, 4, 174.	7.2	289
14	The revisited genome of <i>Pseudomonas putida</i> KT2440 enlightens its value as a robust metabolic <i>chassis</i> . Environmental Microbiology, 2016, 18, 3403-3424.	3.8	270
15	Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 2006, 24, 673-679.	17.5	261
16	Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources. PLoS ONE, 2009, 4, e5584.	2.5	204
17	MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes. Nucleic Acids Research, 2017, 45, D517-D528.	14.5	199
18	Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME Journal, 2011, 5, 1735-1747.	9.8	186

#	Article	IF	Citations
19	A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments. PLoS Genetics, 2007, 3, e53.	3.5	166
20	MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Research, 2020, 48, D579-D589.	14.5	166
21	Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biology, 2013, 14, R17.	9.6	164
22	Reannotation of the genome sequence of Clostridium difficile strain 630. Journal of Medical Microbiology, 2011, 60, 1193-1199.	1.8	143
23	Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nature Communications, 2017, 8, 1685.	12.8	131
24	AMIGene: Annotation of Microbial Genes. Nucleic Acids Research, 2003, 31, 3723-3726.	14.5	126
25	The <i>Frankia alni</i> Symbiotic Transcriptome. Molecular Plant-Microbe Interactions, 2010, 23, 593-607.	2.6	126
26	Revealing the hidden functional diversity of an enzyme family. Nature Chemical Biology, 2014, 10, 42-49.	8.0	113
27	Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of <i>Acinetobacter baumannii</i> Antimicrobial Agents and Chemotherapy, 2005, 49, 4876-4883.	3.2	111
28	Ralstonia syzygii, the Blood Disease Bacterium and Some Asian R. solanacearum Strains Form a Single Genomic Species Despite Divergent Lifestyles. PLoS ONE, 2011, 6, e24356.	2.5	110
29	PPanGGOLiN: Depicting microbial diversity via a partitioned pangenome graph. PLoS Computational Biology, 2020, 16, e1007732.	3.2	102
30	<i>Bacillus subtilis,</i> the model Gramâ€positive bacterium: 20Âyears of annotation refinement. Microbial Biotechnology, 2018, 11, 3-17.	4.2	95
31	NeMeSys: a biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis. Genome Biology, 2009, 10, R110.	9.6	86
32	Global Comparison of the Membrane Subproteomes between a Multidrug-Resistant <i>Acinetobacter baumannii </i> Strain and a Reference Strain. Journal of Proteome Research, 2006, 5, 3385-3398.	3.7	80
33	Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data. BMC Systems Biology, 2008, 2, 85.	3.0	73
34	An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology (United Kingdom), 2013, 159, 757-770.	1.8	72
35	MicroScopeâ€"an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data. Briefings in Bioinformatics, 2019, 20, 1071-1084.	6.5	71
36	Identification of the Last Unknown Genes in the Fermentation Pathway of Lysine*. Journal of Biological Chemistry, 2007, 282, 7191-7197.	3.4	62

3

#	Article	IF	Citations
37	RNA Sequencing and Proteogenomics Reveal the Importance of Leaderless mRNAs in the Radiation-Tolerant Bacterium Deinococcus deserti. Genome Biology and Evolution, 2014, 6, 932-948.	2.5	61
38	Life in an Arsenic-Containing Gold Mine: Genome and Physiology of the Autotrophic Arsenite-Oxidizing Bacterium Rhizobium sp. NT-26. Genome Biology and Evolution, 2013, 5, 934-953.	2.5	60
39	A Conserved Gene Cluster Rules Anaerobic Oxidative Degradation of <scp>I</scp> -Ornithine. Journal of Bacteriology, 2009, 191, 3162-3167.	2.2	58
40	Complete Genome Sequence of Streptomyces cattleya NRRL 8057, a Producer of Antibiotics and Fluorometabolites. Journal of Bacteriology, 2011, 193, 5055-5056.	2.2	58
41	Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nature Microbiology, 2019, 4, 1088-1095.	13.3	57
42	MICheck: a web tool for fast checking of syntactic annotations of bacterial genomes. Nucleic Acids Research, 2005, 33, W471-W479.	14.5	54
43	Large-Scale Transposon Mutagenesis of Photosynthetic <i>Bradyrhizobium</i> Sp. Strain ORS278 Reveals New Genetic Loci Putatively Important for Nod-Independent Symbiosis with <i>Aeschynomene indica</i> . Molecular Plant-Microbe Interactions, 2010, 23, 760-770.	2.6	54
44	Evolutionary Evidence of Algal Polysaccharide Degradation Acquisition by Pseudoalteromonas carrageenovora 9T to Adapt to Macroalgal Niches. Frontiers in Microbiology, 2018, 9, 2740.	3.5	54
45	Core and Panmetabolism in <i>Escherichia coli lournal of Bacteriology, 2011, 193, 1461-1472.</i>	2.2	51
46	Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiologia Plantarum, 2007, 130, 440-453.	5.2	45
47	Profiling the orphan enzymes. Biology Direct, 2014, 9, 10.	4.6	43
48	Conservation and diversity of the IrrE/DdrO ontrolled radiation response in radiation esistant <i>Deinococcus</i> bacteria. MicrobiologyOpen, 2017, 6, e00477.	3.0	37
49	Phylogroup stability contrasts with high within sequence type complex dynamics of Escherichia coli bloodstream infection isolates over a 12-year period. Genome Medicine, 2021, 13, 77.	8.2	35
50	The CanOE Strategy: Integrating Genomic and Metabolic Contexts across Multiple Prokaryote Genomes to Find Candidate Genes for Orphan Enzymes. PLoS Computational Biology, 2012, 8, e1002540.	3.2	32
51	Ancestral Genome Estimation Reveals the History of Ecological Diversification in Agrobacterium. Genome Biology and Evolution, 2017, 9, 3413-3431.	2.5	31
52	Comparative Genomics of Aeschynomene Symbionts: Insights into the Ecological Lifestyle of Nod-Independent Photosynthetic Bradyrhizobia. Genes, 2012, 3, 35-61.	2.4	30
53	Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nature Chemical Biology, 2017, 13, 858-866.	8.0	29
54	panRGP: a pangenome-based method to predict genomic islands and explore their diversity. Bioinformatics, 2020, 36, i651-i658.	4.1	26

#	Article	IF	CITATIONS
55	Transcriptome Profiles of Nod Factor-independent Symbiosis in the Tropical Legume Aeschynomene evenia. Scientific Reports, 2018, 8, 10934.	3.3	23
56	The Nocardia cyriacigeorgica GUH-2 genome shows ongoing adaptation of an environmental Actinobacteria to a pathogen's lifestyle. BMC Genomics, 2013, 14, 286.	2.8	21
57	Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC. BMC Genomics, 2012, 13, 69.	2.8	18
58	Characterization and distribution of the gene cluster encoding RumC, an anti-Clostridium perfringens bacteriocin produced in the gut. FEMS Microbiology Ecology, 2011, 78, 405-415.	2.7	17
59	A Novel Acyl-CoA Beta-Transaminase Characterized from a Metagenome. PLoS ONE, 2011, 6, e22918.	2.5	14
60	Genome Sequence of Micromonospora lupini Lupac 08, Isolated from Root Nodules of Lupinus angustifolius. Journal of Bacteriology, 2012, 194, 4135-4135.	2.2	14
61	Genome Sequence of the Human- and Animal-Pathogenic Strain Nocardia cyriacigeorgica GUH-2. Journal of Bacteriology, 2012, 194, 2098-2099.	2.2	12
62	From Strain Characterization to Field Authorization: Highlights on Bacillus velezensis Strain B25 Beneficial Properties for Plants and Its Activities on Phytopathogenic Fungi. Microorganisms, 2021, 9, 1924.	3.6	9
63	Complete Genome Sequence of <i>Bradyrhizobium</i> sp. ORS285, a Photosynthetic Strain Able To Establish Nod Factor-Dependent or Nod Factor-Independent Symbiosis with <i>Aeschynomene</i> Legumes. Genome Announcements, 2017, 5, .	0.8	8
64	Construction of a complete set of Neisseria meningitidis mutants and its use for the phenotypic profiling of this human pathogen. Nature Communications, 2020, 11, 5541.	12.8	8
65	Alterocin, an Antibiofilm Protein Secreted by <i>Pseudoalteromonas</i> sp. Strain 3J6. Applied and Environmental Microbiology, 2020, 86, .	3.1	7
66	Large α-aminonitrilase activity screening of nitrilase superfamily members: Access to conversion and enantiospecificity by LC–MS. Journal of Molecular Catalysis B: Enzymatic, 2014, 107, 79-88.	1.8	6
67	L'annotationin silicodes séquences génomiques. Medecine/Sciences, 2002, 18, 237-250.	0.2	5
68	Complete Genome Sequence of Bacillus methylotrophicus Strain B25, a Potential Plant Growth-Promoting Rhizobacterium. Genome Announcements, 2016, 4, .	0.8	5
69	A new network representation of the metabolism to detect chemical transformation modules. BMC Bioinformatics, 2015, 16, 385.	2.6	3
70	Complete Genome Sequences of Two $\mbox{\sc i}\mbox{\sc Pseudomonas}\mbox{\sc /i}\mbox{\sc Species Isolated from Marine Environments of the Pacific Ocean. Microbiology Resource Announcements, 2021, 10, .}$	0.6	3
71	Accurate Microbial Genome Annotation Using an Integrated and User-Friendly Environment for Community Expertise of Gene Functions: The MicroScope Platform. Springer Protocols, 2015, , 141-169.	0.3	2
72	GROOLS: reactive graph reasoning for genome annotation through biological processes. BMC Bioinformatics, 2018, 19, 132.	2.6	2

#	Article	IF	CITATIONS
73	Complete Genome Sequence of $\langle i \rangle$ Tepidibacter $\langle i \rangle$ sp. Strain 8C15b, Isolated from Bank Sediments of Haiphong Bay, Vietnam. Microbiology Resource Announcements, 2022, 11, .	0.6	1
74	PPanGGOLiN: Depicting microbial diversity via a partitioned pangenome graph., 2020, 16, e1007732.		0
75	PPanGGOLiN: Depicting microbial diversity via a partitioned pangenome graph., 2020, 16, e1007732.		O
76	PPanGGOLiN: Depicting microbial diversity via a partitioned pangenome graph., 2020, 16, e1007732.		0
77	PPanGGOLiN: Depicting microbial diversity via a partitioned pangenome graph. , 2020, 16, e1007732.		0