Robert J Lefkowitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7885821/publications.pdf

Version: 2024-02-01

155 papers 42,738 citations

91 h-index 149 g-index

157 all docs

157 docs citations

157 times ranked

21105 citing authors

#	Article	IF	CITATIONS
1	Translating science to medicine: The case for physician-scientists. Science Translational Medicine, 2022, 14, eabg7852.	12.4	11
2	GPCR-mediated \hat{l}^2 -arrestin activation deconvoluted with single-molecule precision. Cell, 2022, 185, 1661-1675.e16.	28.9	43
3	Signaling at the endosome: cryoâ€EM structure of a GPCR–G protein–betaâ€arrestin megacomplex. FEBS Journal, 2021, 288, 2562-2569.	4.7	22
4	<i>β</i> -Arrestin–Biased Allosteric Modulator Potentiates Carvedilol-Stimulated <i>β</i> Adrenergic Receptor Cardioprotection. Molecular Pharmacology, 2021, 100, 568-579.	2.3	24
5	Unique Positive Cooperativity Between the $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Arrestinâ \in Biased $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Blocker Carvedilol and a Small Molecule Positive Allosteric Modulator of the $\langle i \rangle \hat{l}^2 \langle i \rangle$ 2-Adrenergic Receptor. Molecular Pharmacology, 2021, 100, 513-525.	2.3	18
6	The GPCR–β-arrestin complex allosterically activates C-Raf by binding its amino terminus. Journal of Biological Chemistry, 2021, 297, 101369.	3.4	7
7	Allosteric activation of proto-oncogene kinase Src by GPCR–beta-arrestin complexes. Journal of Biological Chemistry, 2020, 295, 16773-16784.	3.4	21
8	Synthetic nanobodies as angiotensin receptor blockers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20284-20291.	7.1	35
9	SnapShot: β-Arrestin Functions. Cell, 2020, 182, 1362-1362.e1.	28.9	35
10	The β-arrestin-biased β-adrenergic receptor blocker carvedilol enhances skeletal muscle contractility. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12435-12443.	7.1	19
11	β-Arrestin–Biased Angiotensin II Receptor Agonists for COVID-19. Circulation, 2020, 142, 318-320.	1.6	19
12	Conformational Basis of G Protein-Coupled Receptor Signaling Versatility. Trends in Cell Biology, 2020, 30, 736-747.	7.9	147
13	Molecular Mechanism of Biased Signaling in a Prototypical G-protein-coupled Receptor. Biophysical Journal, 2020, 118, 162a.	0.5	4
14	Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science, 2020, 367, 888-892.	12.6	150
15	Molecular mechanism of biased signaling in a prototypical G protein–coupled receptor. Science, 2020, 367, 881-887.	12.6	168
16	Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature, 2020, 579, 297-302.	27.8	238
17	Detergent- and phospholipid-based reconstitution systems have differential effects on constitutive activity of G-protein–coupled receptors. Journal of Biological Chemistry, 2019, 294, 13218-13223.	3.4	38
18	Mechanism of \hat{l}^2 ₂ AR regulation by an intracellular positive allosteric modulator. Science, 2019, 364, 1283-1287.	12.6	82

#	Article	IF	CITATIONS
19	Structure of an endosomal signaling GPCR–G protein–β-arrestin megacomplex. Nature Structural and Molecular Biology, 2019, 26, 1123-1131.	8.2	139
20	Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations. Cell, 2019, 176, 468-478.e11.	28.9	194
21	Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody. Cell, 2019, 176, 479-490.e12.	28.9	143
22	Biased signalling: from simple switches to allosteric microprocessors. Nature Reviews Drug Discovery, 2018, 17, 243-260.	46.4	524
23	Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in \hat{i}^2 -arrestin coupling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3834-3839.	7.1	57
24	A Serendipitous Scientist. Annual Review of Pharmacology and Toxicology, 2018, 58, 17-32.	9.4	4
25	\hat{l}^2 -arrestin 1 regulates \hat{l}^2 2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility. Skeletal Muscle, 2018, 8, 39.	4.2	37
26	Manifold roles of \hat{l}^2 -arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Science Signaling, 2018, 11, .	3.6	169
27	Small-Molecule Positive Allosteric Modulators of the $\langle i \rangle \hat{l}^2 \langle i \rangle \langle sub \rangle 2 \langle sub \rangle$ -Adrenoceptor Isolated from DNA-Encoded Libraries. Molecular Pharmacology, 2018, 94, 850-861.	2.3	66
28	GPCR signaling: conformational activation of arrestins. Cell Research, 2018, 28, 783-784.	12.0	20
29	G proteinâ \in "coupled receptor kinases (GRKs) orchestrate biased agonism at the \hat{l}^2 ₂ -adrenergic receptor. Science Signaling, 2018, 11, .	3.6	47
30	Allosteric "beta-blocker―isolated from a DNA-encoded small molecule library. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1708-1713.	7.1	118
31	Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2562-2567.	7.1	281
32	\hat{l}^2 -Arrestin2 Couples Metabotropic Glutamate Receptor 5 to Neuronal Protein Synthesis and Is a Potential Target to Treat Fragile X. Cell Reports, 2017, 18, 2807-2814.	6.4	60
33	Mechanism of intracellular allosteric \hat{l}^22AR antagonist revealed by X-ray crystal structure. Nature, 2017, 548, 480-484.	27.8	148
34	\hat{I}^2 -Arrestin2 mediates progression of murine primary myelofibrosis. JCI Insight, 2017, 2, .	5.0	5
35	Conformationally selective RNA aptamers allosterically modulate the \hat{I}^2 2-adrenoceptor. Nature Chemical Biology, 2016, 12, 709-716.	8.0	65
36	GPCR-G Protein-Î ² -Arrestin Super-Complex Mediates Sustained G Protein Signaling. Cell, 2016, 166, 907-919.	28.9	443

#	Article	IF	CITATIONS
37	Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature, 2016, 535, 448-452.	27.8	290
38	The role of \hat{I}^2 -arrestin2-dependent signaling in thoracic aortic aneurysm formation in a murine model of Marfan syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1516-H1527.	3.2	17
39	Î ² -arrestin2 Is Necessary for Development of MPLW515L Mutant Primary Myelofibrosis. Blood, 2015, 126, 486-486.	1.4	0
40	Allosteric Modulation of \hat{l}^2 -Arrestin-biased Angiotensin II Type 1 Receptor Signaling by Membrane Stretch. Journal of Biological Chemistry, 2014, 289, 28271-28283.	3.4	55
41	Divergent Transducer-specific Molecular Efficacies Generate Biased Agonism at a G Protein-coupled Receptor (GPCR). Journal of Biological Chemistry, 2014, 289, 14211-14224.	3.4	105
42	Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature, 2014, 512, 218-222.	27.8	433
43	Regulation of $\langle i \rangle \hat{l}^2 \langle j \rangle \langle sub \rangle 2 \langle sub \rangle$ -Adrenergic Receptor Function by Conformationally Selective Single-Domain Intrabodies. Molecular Pharmacology, 2014, 85, 472-481.	2.3	121
44	Recent developments in biased agonism. Current Opinion in Cell Biology, 2014, 27, 18-24.	5.4	247
45	Discovery of \hat{I}^2 2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. ACS Medicinal Chemistry Letters, 2013, 4, 1005-1010.	2.8	65
46	Arrestins Come of Age. Progress in Molecular Biology and Translational Science, 2013, 118, 3-18.	1.7	50
47	Structure of active \hat{I}^2 -arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature, 2013, 497, 137-141.	27.8	393
48	A Brief History of Gâ€Protein Coupled Receptors (Nobel Lecture). Angewandte Chemie - International Edition, 2013, 52, 6366-6378.	13.8	222
49	Eine kurze Geschichte der Gâ€Proteinâ€gekoppelten Rezeptoren (Nobelâ€Aufsatz). Angewandte Chemie, 2013, 125, 6494-6507.	2.0	9
50	Crystal structure of active Betaâ€arrestin1 bound to phosphorylated carboxyâ€terminus of a G proteinâ€coupled receptor. FASEB Journal, 2013, 27, lb549.	0.5	0
51	Targeting \hat{I}^2 -arrestin2 Enhances Survival in a Murine Model of Chronic Myeloid Leukemia. Blood, 2013, 122, 857-857.	1.4	O
52	Molecular Mechanism of \hat{l}^2 -Arrestin-Biased Agonism at Seven-Transmembrane Receptors. Annual Review of Pharmacology and Toxicology, 2012, 52, 179-197.	9.4	536
53	Quantifying Ligand Bias at Seven-Transmembrane Receptors. Molecular Pharmacology, 2011, 80, 367-377.	2.3	341
54	A stress response pathway regulates DNA damage through \hat{l}^2 2-adrenoreceptors and \hat{l}^2 -arrestin-1. Nature, 2011, 477, 349-353.	27.8	360

#	Article	IF	CITATIONS
55	Therapeutic potential of \hat{l}^2 -arrestin- and G protein-biased agonists. Trends in Molecular Medicine, 2011, 17, 126-139.	6.7	469
56	\hat{l}^2 -arrestin-mediated receptor trafficking and signal transduction. Trends in Pharmacological Sciences, 2011, 32, 521-533.	8.7	628
57	Emerging paradigms of \hat{I}^2 -arrestin-dependent seven transmembrane receptor signaling. Trends in Biochemical Sciences, 2011, 36, 457-469.	7.5	380
58	Distinct Phosphorylation Sites on the \hat{l}^2 ₂ -Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of \hat{l}^2 -Arrestin. Science Signaling, 2011, 4, ra51.	3.6	535
59	\hat{l}^2 -Arrestin Deficiency Protects Against Pulmonary Fibrosis in Mice and Prevents Fibroblast Invasion of Extracellular Matrix. Science Translational Medicine, 2011, 3, 74ra23.	12.4	81
60	A tale of two callings. Journal of Clinical Investigation, 2011, 121, 4201-4203.	8.2	3
61	Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nature Reviews Drug Discovery, 2010, 9, 373-386.	46.4	724
62	î²-arrestin- but not G protein-mediated signaling by the "decoy―receptor CXCR7. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 628-632.	7.1	499
63	[beta]â€arrestin 1 mediates angiotensin II induced ubiquitination and downâ€regulation of TRPV4. FASEB Journal, 2009, 23, 944.3.	0.5	0
64	\hat{l}^2 -Arrestin-biased Agonism at the \hat{l}^2 2-Adrenergic Receptor. Journal of Biological Chemistry, 2008, 283, 5669-5676.	3.4	226
65	\hat{l}^2 -Arrestin-mediated Signaling Regulates Protein Synthesis. Journal of Biological Chemistry, 2008, 283, 10611-10620.	3.4	84
66	Pharmacological Characterization of Membrane-Expressed Human Trace Amine-Associated Receptor 1 (TAAR1) by a Bioluminescence Resonance Energy Transfer cAMP Biosensor. Molecular Pharmacology, 2008, 74, 585-594.	2.3	135
67	The annual ASCI meeting: does nostalgia have a future?. Journal of Clinical Investigation, 2008, 118, 1231-1233.	8.2	2
68	The Active Conformation of Î ² -Arrestin1. Journal of Biological Chemistry, 2007, 282, 21370-21381.	3.4	121
69	A unique mechanism of \hat{l}^2 -blocker action: Carvedilol stimulates \hat{l}^2 -arrestin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16657-16662.	7.1	545
70	Î ² -Arrestins and Cell Signaling. Annual Review of Physiology, 2007, 69, 483-510.	13.1	1,277
71	Introduction to Special Section on β-Arrestins. Annual Review of Physiology, 2007, 69, .	13.1	42
72	β-Arrestin–mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection. Journal of Clinical Investigation, 2007, 117, 2445-2458.	8.2	405

#	Article	IF	CITATIONS
73	New Roles for \hat{I}^2 -Arrestins in Cell Signaling: Not Just for Seven-Transmembrane Receptors. Molecular Cell, 2006, 24, 643-652.	9.7	273
74	Molecular Mechanisms of Coupling in Hormone Receptor-Adenylate Cyclase Systems. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 53, 1-43.	1.3	36
75	Distinct \hat{l}^2 -Arrestin- and G Protein-dependent Pathways for Parathyroid Hormone Receptor-stimulated ERK1/2 Activation. Journal of Biological Chemistry, 2006, 281, 10856-10864.	3.4	422
76	\hat{l}^2 -Arrestin-dependent, G Protein-independent ERK1/2 Activation by the \hat{l}^2 2 Adrenergic Receptor. Journal of Biological Chemistry, 2006, 281, 1261-1273.	3.4	651
77	Conformational Changes in βâ€arrestin1: The Importance of βâ€arrestin1's Nâ€domain. FASEB Journal, 2006, A114.	20 <u>.</u> 5	0
78	Summary of Wenner-Gren International Symposium Receptor-Receptor Interactions Among Heptaspanning Membrane Receptors: From Structure to Function. Journal of Molecular Neuroscience, 2005, 26, 293-294.	2.3	5
79	Receptor regulation: \hat{l}^2 -arrestin moves up a notch. Nature Cell Biology, 2005, 7, 1159-1161.	10.3	22
80	Functional antagonism of different G protein-coupled receptor kinases for Â-arrestin-mediated angiotensin II receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1442-1447.	7.1	318
81	Different G protein-coupled receptor kinases govern G protein and Â-arrestin-mediated signaling of V2 vasopressin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1448-1453.	7.1	298
82	Transduction of Receptor Signals by ß-Arrestins. Science, 2005, 308, 512-517.	12.6	1,570
83	Constitutive Protease-activated Receptor-2-mediated Migration of MDA MB-231 Breast Cancer Cells Requires Both \hat{l}^2 -Arrestin-1 and -2. Journal of Biological Chemistry, 2004, 279, 55419-55424.	3.4	155
84	Differential Kinetic and Spatial Patterns of \hat{I}^2 -Arrestin and G Protein-mediated ERK Activation by the Angiotensin II Receptor. Journal of Biological Chemistry, 2004, 279, 35518-35525.	3.4	455
85	Stable Interaction between \hat{l}^2 -Arrestin 2 and Angiotensin Type 1A Receptor Is Required for \hat{l}^2 -Arrestin 2-mediated Activation of Extracellular Signal-regulated Kinases 1 and 2. Journal of Biological Chemistry, 2004, 279, 48255-48261.	3.4	76
86	Activation-dependent Conformational Changes in \hat{l}^2 -Arrestin 2. Journal of Biological Chemistry, 2004, 279, 55744-55753.	3.4	135
87	Reciprocal Regulation of Angiotensin Receptor-activated Extracellular Signal-regulated Kinases by \hat{l}^2 -Arrestins 1 and 2. Journal of Biological Chemistry, 2004, 279, 7807-7811.	3.4	157
88	Î ² -arrestins: traffic cops of cell signaling. Current Opinion in Cell Biology, 2004, 16, 162-168.	5.4	269
89	Historical review: A brief history and personal retrospective of seven-transmembrane receptors. Trends in Pharmacological Sciences, 2004, 25, 413-422.	8.7	363
90	Keeping G Proteins at Bay: A Complex Between G Protein-Coupled Receptor Kinase 2 and Gbetagamma. Science, 2003, 300, 1256-1262.	12.6	361

#	Article	IF	Citations
91	Independent Â-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10782-10787.	7.1	620
92	The Stability of the G Protein-coupled Receptor-Î ² -Arrestin Interaction Determines the Mechanism and Functional Consequence of ERK Activation. Journal of Biological Chemistry, 2003, 278, 6258-6267.	3.4	316
93	Desensitization, internalization, and signaling functions of Â-arrestins demonstrated by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1740-1744.	7.1	210
94	\hat{l}^2 -Arrestin-2 regulates the development of allergic asthma. Journal of Clinical Investigation, 2003, 112, 566-574.	8.2	99
95	\hat{l}^2 -Arrestin-2 regulates the development of allergic asthma. Journal of Clinical Investigation, 2003, 112, 566-574.	8.2	166
96	Protein Kinase A-mediated Phosphorylation of the \hat{I}^2 2-Adrenergic Receptor Regulates Its Coupling to Gs and Gi. Journal of Biological Chemistry, 2002, 277, 31249-31256.	3.4	175
97	\hat{l}^2 -Arrestin Scaffolding of the ERK Cascade Enhances Cytosolic ERK Activity but Inhibits ERK-mediated Transcription following Angiotensin AT1a Receptor Stimulation. Journal of Biological Chemistry, 2002, 277, 9429-9436.	3.4	345
98	Dancing with Different Partners: Protein Kinase A Phosphorylation of Seven Membrane-Spanning Receptors Regulates Their G Protein-Coupling Specificity. Molecular Pharmacology, 2002, 62, 971-974.	2.3	162
99	Phosphorylation of \hat{l}^2 -Arrestin2 Regulates Its Function in Internalization of \hat{l}^2 2-Adrenergic Receptors. Biochemistry, 2002, 41, 10692-10699.	2.5	87
100	Seven-transmembrane-spanning receptors and heart function. Nature, 2002, 415, 206-212.	27.8	862
101	Seven-transmembrane receptors. Nature Reviews Molecular Cell Biology, 2002, 3, 639-650.	37.0	2,357
102	The role of \hat{I}^2 -arrestins in the termination and transduction of G-protein-coupled receptor signals. Journal of Cell Science, 2002, 115, 455-465.	2.0	935
103	The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. Journal of Cell Science, 2002, 115, 455-65.	2.0	780
104	Augmentation of Cardiac Contractility Mediated by the Human \hat{l}^2 ₃ -Adrenergic Receptor Overexpressed in the Hearts of Transgenic Mice. Circulation, 2001, 104, 2485-2491.	1.6	85
105	Classical and new roles of \hat{l}^2 -arrestins in the regulation of G-PROTEIN-COUPLED receptors. Nature Reviews Neuroscience, 2001, 2, 727-733.	10.2	413
106	\hat{l} /4-Opioid receptor desensitization by \hat{l}^2 -arrestin-2 determines morphine tolerance but not dependence. Nature, 2000, 408, 720-723.	27.8	834
107	Intracoronary Adenovirus-Mediated Delivery and Overexpression of the \hat{l}^2 ₂ -Adrenergic Receptor in the Heart. Circulation, 2000, 101, 408-414.	1.6	133
108	\hat{l}_{\pm} -Actinin is a potent regulator of G protein-coupled receptor kinase activity and substrate specificity in vitro. FEBS Letters, 2000, 473, 280-284.	2.8	39

#	Article	IF	Citations
109	beta -Arrestin 2: A Receptor-Regulated MAPK Scaffold for the Activation of JNK3., 2000, 290, 1574-1577.		752
110	Altered airway and cardiac responses in mice lacking G protein-coupled receptor kinase 3. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1214-R1221.	1.8	33
111	Enhanced Morphine Analgesia in Mice Lacking Î ² -Arrestin 2. Science, 1999, 286, 2495-2498.	12.6	953
112	Myocardial G Proteinâ€Coupled Receptor Kinases: Implications for Heart Failure Therapy. Proceedings of the Association of American Physicians, 1999, 111, 399-405.	2.0	35
113	The \hat{l}^2 2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature, 1998, 392, 626-630.	27.8	566
114	Palmitoylation Increases the Kinase Activity of the G Protein-Coupled Receptor Kinase, GRK6â€. Biochemistry, 1998, 37, 16053-16059.	2.5	48
115	G PROTEIN–COUPLED RECEPTOR KINASES. Annual Review of Biochemistry, 1998, 67, 653-692.	11.1	1,194
116	$\hat{G^{12}^{3}}$ Subunits Mediate Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 1997, 272, 4637-4644.	3.4	420
117	Switching of the coupling of the \hat{I}^2 2-adrenergic receptor to different G proteins by protein kinase A. Nature, 1997, 390, 88-91.	27.8	1,176
118	Costimulation of Adenylyl Cyclase and Phospholipase C by a Mutant Â1B-Adrenergic Receptor Transgene Promotes Malignant Transformation of Thyroid Follicular Cells. Endocrinology, 1997, 138, 369-378.	2.8	6
119	Identification of the G Protein-coupled Receptor Kinase Phosphorylation Sites in the Human Î ² 2-Adrenergic Receptor. Journal of Biological Chemistry, 1996, 271, 13796-13803.	3.4	205
120	Role of c-Src Tyrosine Kinase in G Protein-coupled Receptorand $\hat{G^{2}^{3}}$ Subunit-mediated Activation of Mitogen-activated Protein Kinases. Journal of Biological Chemistry, 1996, 271, 19443-19450.	3.4	483
121	Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the \hat{l}^22 -adrenoceptor. Nature, 1995, 374, 272-276.	27.8	431
122	Receptor-tyrosine-kinase- and $G^{\hat{1}^3}$ -mediated MAP kinase activation by a common signalling pathway. Nature, 1995, 376, 781-784.	27.8	554
123	Protein kinases that phosphorylate activated G proteinâ€coupled receptors. FASEB Journal, 1995, 9, 175-182.	0.5	494
124	Distinct Pathways of Gi- and Gq-mediated Mitogen-activated Protein Kinase Activation. Journal of Biological Chemistry, 1995, 270, 17148-17153.	3.4	397
125	A region of adenylyl cyclase 2 critical for regulation by G protein beta gamma subunits. Science, 1995, 268, 1166-1169.	12.6	261
126	Activation of the cloned muscarinic potassium channel by G protein $\hat{l}^2\hat{l}^3$ subunits. Nature, 1994, 370, 143-146.	27.8	484

#	Article	IF	CITATIONS
127	Turned on to ill effect. Nature, 1993, 365, 603-604.	27.8	101
128	Identification, Quantification, and Localization of mRNA for Three Distinct Alpha ₁ Adrenergic Receptor Subtypes in Human Prostate. Journal of Urology, 1993, 150, 546-551.	0.4	310
129	Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature, 1992, 359, 147-150.	27.8	310
130	Variations on a theme. Nature, 1991, 351, 353-354.	27.8	22
131	Mechanisms involved in adrenergic receptor desensitization. Biochemical Society Transactions, 1990, 18, 541-544.	3.4	31
132	Turning off the signal: desensitization of βâ€adrenergic receptor function. FASEB Journal, 1990, 4, 2881-2889.	0.5	1,209
133	<i>Response</i> : Analysis of Ligand Binding Specificity of Receptor Chimeras. Science, 1989, 243, 237-237.	12.6	0
134	Removal of phosphorylation sites from the \hat{I}^2 2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature, 1988, 333, 370-373.	27.8	439
135	The genomic clone G-21 which resembles a \hat{I}^2 -adrenergic receptor sequence encodes the 5-HT1A receptor. Nature, 1988, 335, 358-360.	27.8	611
136	Cloning of the cDNA and Genes for the Hamster and Human \hat{l}^2 2-Adrenergic Receptors. Journal of Receptors and Signal Transduction, 1988, 8, 7-21.	1.2	13
137	Regulation of the β ₂ â€adrenergic receptor and its mRNA in the rat ventral prostate by testosterone. FEBS Letters, 1988, 233, 173-176.	2.8	49
138	Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature, 1987, 327, 67-70.	27.8	538
139	An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature, 1987, 329, 75-79.	27.8	513
140	Cloning of the gene and cDNA for mammalian \hat{l}^2 -adrenergic receptor and homology with rhodopsin. Nature, 1986, 321, 75-79.	27.8	1,284
141	Light-dependent phosphorylation of rhodopsin by \hat{l}^2 -adrenergic receptor kinase. Nature, 1986, 321, 869-872.	27.8	207
142	Identification of the Subunit Structure of Rat Pineal Adrenergic Receptors by Photoaffinity Labeling. Journal of Neurochemistry, 1986, 46, 1153-1160.	3.9	12
143	Molecular mechanisms of receptor desensitization using the \hat{l}^2 -adrenergic receptor-coupled adenylate cyclase system as a model. Nature, 1985, 317, 124-129.	27.8	758
144	A role for Ni in the hormonal stimulation of adenylate cyclase. Nature, 1985, 318, 293-295.	27.8	107

#	Article	lF	CITATIONS
145	Effect of pertussis toxin on $\hat{l}\pm 2$ -adrenoceptors: decreased formation of the high-affinity state for agonists. FEBS Letters, 1984, 172, 95-98.	2.8	19
146	Pure \hat{l}^2 -adrenergic receptor: the single polypeptide confers catecholamine responsiveness to adenylate cyclase. Nature, 1983, 306, 562-566.	27.8	117
147	Title is missing!. Die Makromolekulare Chemie, 1981, 182, 1945-1950.	1.1	7
148	Dihydroergocryptine binding and α-adrenoreceptors in smooth muscle. Nature, 1980, 283, 109-110.	27.8	6
149	Differential regulation of the $\hat{l}\pm 2$ -adrenergic receptor by Na+ and guanine nucleotides. Nature, 1980, 288, 709-711.	27.8	123
150	\hat{l}^2 -Adrenoreceptors determine affinity but not intrinsic activity of adenylate cyclase stimulants. Nature, 1979, 280, 502-504.	27.8	25
151	Chronic guanethidine treatment increases cardiac \hat{l}^2 -adrenergic receptors. Nature, 1978, 273, 240-242.	27.8	89
152	Beta-adrenergic receptors: Regulatory role of agonists. Journal of Supramolecular Structure, 1978, 8, 501-510.	2.3	7
153	Comparison of specificity of agonist and antagonist radioligand binding to \hat{l}^2 adrenergic receptors. Nature, 1977, 268, 453-454.	27.8	17
154	Temperature immutability of adenyl cyclase-coupled \hat{l}^2 adrenergic recptors. Nature, 1974, 249, 258-260.	27.8	31
155	ACTHâ€RECEPTOR INTERACTION IN THE ADRENAL: A MODEL FOR THE INITIAL STEP IN THE ACTION OF HORMONES THAT STIMULATE ADENYL CYCLASE. Annals of the New York Academy of Sciences, 1971, 185, 195-209.	3.8	104