
Douglas G Mcneel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7885316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potentiating Endogenous Antitumor Immunity to Prostate Cancer through Combination Immunotherapy with CTLA4 Blockade and GM-CSF. Cancer Research, 2009, 69, 609-615.	0.4	238
2	Safety and Immunological Efficacy of a DNA Vaccine Encoding Prostatic Acid Phosphatase in Patients With Stage D0 Prostate Cancer. Journal of Clinical Oncology, 2009, 27, 4047-4054.	0.8	214
3	A First-in-Human Phase I Study of Subcutaneous Outpatient Recombinant Human IL15 (rhIL15) in Adults with Advanced Solid Tumors. Clinical Cancer Research, 2018, 24, 1525-1535.	3.2	153
4	Preclinical Pharmacokinetics and Biodistribution Studies of ⁸⁹ Zr-Labeled Pembrolizumab. Journal of Nuclear Medicine, 2017, 58, 162-168.	2.8	152
5	Phase I Trial of a Monoclonal Antibody Specific for αvβ3 Integrin (MEDI-522) in Patients with Advanced Malignancies, Including an Assessment of Effect on Tumor Perfusion. Clinical Cancer Research, 2005, 11, 7851-7860.	3.2	147
6	Pre-existent immunity to the HER-2/neu oncogenic protein in patients with HER-2/neu overexpressing breast and ovarian cancer. Breast Cancer Research and Treatment, 2000, 62, 245-252.	1.1	139
7	Pilot trial of interleukin-2 and zoledronic acid to augment γδT cells as treatment for patients with refractory renal cell carcinoma. Cancer Immunology, Immunotherapy, 2011, 60, 1447-1460.	2.0	127
8	DNA Vaccine Encoding Prostatic Acid Phosphatase (PAP) Elicits Long-term T-cell Responses in Patients With Recurrent Prostate Cancer. Journal of Immunotherapy, 2010, 33, 639-647.	1.2	104
9	89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 110-120.	3.3	100
10	Human Prostate Tumor Antigen–Specific CD8+ Regulatory T Cells Are Inhibited by CTLA-4 or IL-35 Blockade. Journal of Immunology, 2012, 189, 5590-5601.	0.4	96
11	Androgen deprivation and immunotherapy for the treatment of prostate cancer. Endocrine-Related Cancer, 2017, 24, T297-T310.	1.6	96
12	Phase I trial of tremelimumab in combination with short-term androgen deprivation in patients with PSA-recurrent prostate cancer. Cancer Immunology, Immunotherapy, 2012, 61, 1137-1147.	2.0	85
13	ImmunoPET Imaging of CTLA-4 Expression in Mouse Models of Non-small Cell Lung Cancer. Molecular Pharmaceutics, 2017, 14, 1782-1789.	2.3	84
14	Prostate cancer patients on androgen deprivation therapy develop persistent changes in adaptive immune responses. Human Immunology, 2010, 71, 496-504.	1.2	81
15	The SSX Family of Cancer-Testis Antigens as Target Proteins for Tumor Therapy. Clinical and Developmental Immunology, 2010, 2010, 1-18.	3.3	80
16	Molecular Imaging of Immunotherapy Targets in Cancer. Journal of Nuclear Medicine, 2016, 57, 1487-1492.	2.8	77
17	ANTIBODY IMMUNITY TO PROSTATE CANCER ASSOCIATED ANTIGENS CAN BE DETECTED IN THE SERUM OF PATIENTS WITH PROSTATE CANCER. Journal of Urology, 2000, 164, 1825-1829.	0.2	69
18	PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope–Modified DNA Vaccine Immunization. Cancer Immunology Research, 2015, 3, 946-955.	1.6	66

#	Article	IF	CITATIONS
19	Concurrent, but not sequential, PD-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, castration-resistant prostate cancer. Oncotarget, 2018, 9, 25586-25596.	0.8	66
20	Endothelin Receptor Antagonists in Cancer Therapy. Cancer Investigation, 2007, 25, 785-794.	0.6	56
21	Expression and Immunotherapeutic Targeting of the SSX Family of Cancer–Testis Antigens in Prostate Cancer. Cancer Research, 2011, 71, 6785-6795.	0.4	53
22	Safety and immunological efficacy of a prostate cancer plasmid DNA vaccine encoding prostatic acid phosphatase (PAP). Vaccine, 2006, 24, 293-303.	1.7	52
23	Naturally occurring prostate cancer antigen-specific T cell responses of a Th1 Phenotype can be detected in patients with prostate cancer. Prostate, 2001, 47, 222-229.	1.2	51
24	Plasmid DNA vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-specific CD8+ T cells. Cancer Immunology, Immunotherapy, 2007, 56, 885-895.	2.0	51
25	Vaccination with High-Affinity Epitopes Impairs Antitumor Efficacy by Increasing PD-1 Expression on CD8+ T Cells. Cancer Immunology Research, 2017, 5, 630-641.	1.6	50
26	GVAX: an allogeneic, whole-cell, GM-CSF-secreting cellular immunotherapy for the treatment of prostate cancer. Expert Opinion on Biological Therapy, 2007, 7, 1893-1902.	1.4	49
27	Inducible expression of a prostate cancerâ€ŧestis antigen, SSXâ€2, following treatment with a DNA methylation inhibitor. Prostate, 2007, 67, 1781-1790.	1.2	48
28	Identification of Antigen-Specific IgG in Sera from Patients with Chronic Prostatitis. Journal of Clinical Immunology, 2004, 24, 492-502.	2.0	47
29	HLA-A2-restricted T-cell epitopes specific for prostatic acid phosphatase. Cancer Immunology, Immunotherapy, 2010, 59, 943-953.	2.0	47
30	Pilot study of an HLA-A2 peptide vaccine using flt3 ligand as a systemic vaccine adjuvant. Journal of Clinical Immunology, 2003, 23, 62-72.	2.0	45
31	A Transient Increase in Eosinophils Is Associated with Prolonged Survival in Men with Metastatic Castration-Resistant Prostate Cancer Who Receive Sipuleucel-T. Cancer Immunology Research, 2014, 2, 988-999.	1.6	45
32	Putting the Pieces Together: Completing the Mechanism of Action Jigsaw for Sipuleucel-T. Journal of the National Cancer Institute, 2020, 112, 562-573.	3.0	45
33	An aberrant prostate antigen–specific immune response causes prostatitis in mice and is associated with chronic prostatitis in humans. Journal of Clinical Investigation, 2009, 119, 2031-41.	3.9	44
34	Phase II Trial of a DNA Vaccine Encoding Prostatic Acid Phosphatase (pTVG-HP [MVI-816]) in Patients With Progressive, Nonmetastatic, Castration-Sensitive Prostate Cancer. Journal of Clinical Oncology, 2019, 37, 3507-3517.	0.8	43
35	Antitumor vaccination of prostate cancer patients elicits PD-1/PD-L1 regulated antigen-specific immune responses. Oncolmmunology, 2016, 5, e1165377.	2.1	42
36	Real-Time Immune Monitoring to Guide Plasmid DNA Vaccination Schedule Targeting Prostatic Acid Phosphatase in Patients with Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2014, 20, 3692-3704.	3.2	41

#	Article	IF	CITATIONS
37	Immunization With Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor as a Vaccine Adjuvant Elicits Both a Cellular and Humoral Response to Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor. Blood, 1999, 93, 2653-2659.	0.6	38
38	Treatment of Chronic Lymphocytic Leukemia with a Hypomethylating Agent Induces Expression of NXF2, an Immunogenic Cancer Testis Antigen. Clinical Cancer Research, 2009, 15, 3406-3415.	3.2	38
39	DNA vaccines for prostate cancer. , 2017, 174, 27-42.		36
40	TLR Stimulation during T-cell Activation Lowers PD-1 Expression on CD8+ T Cells. Cancer Immunology Research, 2018, 6, 1364-1374.	1.6	36
41	Antigen loss and tumor-mediated immunosuppression facilitate tumor recurrence. Expert Review of Vaccines, 2012, 11, 1315-1317.	2.0	35
42	Noninvasive Imaging and Quantification of Radiotherapy-Induced PD-L1 Upregulation with ⁸⁹ Zr–Df–Atezolizumab. Bioconjugate Chemistry, 2019, 30, 1434-1441.	1.8	34
43	Prime-boost vaccination targeting prostatic acid phosphatase (PAP) in patients with metastatic castration-resistant prostate cancer (mCRPC) using Sipuleucel-T and a DNA vaccine. , 2018, 6, 21.		33
44	Effects of a monoclonal anti-αvβ3 integrin antibody on blood vessels—A pharmacodynamic study. Investigational New Drugs, 2006, 25, 49-55.	1.2	32
45	Humoral immune responses to testis antigens in sera from patients with prostate cancer. Cancer Immunity, 2006, 6, 1.	3.2	32
46	Vaccines Targeting the Cancer-testis Antigen SSX-2 Elicit HLA-A2 Epitope-specific Cytolytic T Cells. Journal of Immunotherapy, 2011, 34, 569-580.	1.2	31
47	Preclinical and clinical development of DNA vaccines for prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 193-204.	0.8	31
48	The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma. , 2016, 4, 92.		31
49	Immunomodulatory activity of nivolumab in previously treated and untreated metastatic renal cell carcinoma (mRCC): Biomarker-based results from a randomized clinical trial Journal of Clinical Oncology, 2014, 32, 5012-5012.	0.8	30
50	Multicenter Phase I Trial of a DNA Vaccine Encoding the Androgen Receptor Ligand-binding Domain (pTVC-AR, MVI-118) in Patients with Metastatic Prostate Cancer. Clinical Cancer Research, 2020, 26, 5162-5171.	3.2	29
51	DNA vaccines for the treatment of prostate cancer. Expert Review of Vaccines, 2010, 9, 731-745.	2.0	28
52	Newer Therapies in Advanced Prostate Cancer. Clinical Prostate Cancer, 2004, 3, 150-156.	2.1	26
53	Identification of autoantibodies elicited in a patient with prostate cancer presenting as dermatomyositis. International Journal of Urology, 2006, 13, 211-217.	0.5	26
54	The androgen receptor: a biologically relevant vaccine target for the treatment of prostate cancer. Cancer Immunology, Immunotherapy, 2013, 62, 585-596.	2.0	26

#	Article	IF	CITATIONS
55	Randomized phase II trial of docetaxel with or without PSA-TRICOM vaccine in patients with castrate-resistant metastatic prostate cancer: A trial of the ECOG-ACRIN cancer research group (E1809). Human Vaccines and Immunotherapeutics, 2015, 11, 2469-2474.	1.4	26
56	Antibody and Tâ€cell responses specific for the androgen receptor in patients with prostate cancer. Prostate, 2007, 67, 1729-1739.	1.2	25
57	PD-1 and LAG-3 blockade improve anti-tumor vaccine efficacy. Oncolmmunology, 2021, 10, 1912892.	2.1	25
58	Soluble Cytokines Can Act as Effective Adjuvants in Plasmid DNA Vaccines Targeting Self Tumor Antigens. Immunobiology, 2003, 207, 179-186.	0.8	24
59	Prostate cancer immunotherapy. Current Opinion in Urology, 2007, 17, 175-181.	0.9	23
60	CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells. Cancer Immunology, Immunotherapy, 2011, 60, 781-792.	2.0	23
61	Phase I study of single agent NIZ985, a recombinant heterodimeric IL-15 agonist, in adult patients with metastatic or unresectable solid tumors. , 2021, 9, e003388.		23
62	Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. , 2022, 10, e004191.		23
63	Immune-based therapies for prostate cancer. Immunology Letters, 2005, 96, 3-9.	1.1	22
64	Immunotherapy for prostate cancer: False promises or true hope?. Cancer, 2016, 122, 3598-3607.	2.0	22
65	Prostate Cancer Cells Express More Androgen Receptor (AR) Following Androgen Deprivation, Improving Recognition by AR-Specific T Cells. Cancer Immunology Research, 2017, 5, 1074-1085.	1.6	22
66	Increased indoleamine 2,3-dioxygenase activity and expression in prostate cancer following targeted immunotherapy. Cancer Immunology, Immunotherapy, 2019, 68, 1661-1669.	2.0	21
67	B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines. Oncotarget, 2016, 7, 67901-67918.	0.8	21
68	FLT PET/CT imaging of metastatic prostate cancer patients treated with pTVG-HP DNA vaccine and pembrolizumab. , 2019, 7, 23.		20
69	T cells localized to the androgenâ€deprived prostate are T _H 1 and T _H 17 biased. Prostate, 2012, 72, 1239-1247.	1.2	19
70	Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC). , 2022, 10, e004198.		19
71	TCR diversity – a universal cancer immunotherapy biomarker?. , 2016, 4, 69.		18
72	Antigen-Specific IgG Elicited in Subjects with Prostate Cancer Treated with Flt3 Ligand. Journal of Immunotherapy, 2005, 28, 268-275.	1.2	17

#	Article	IF	CITATIONS
73	Inducible expression of cancer-testis antigens in human prostate cancer. Oncotarget, 2016, 7, 84359-84374.	0.8	17
74	DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope-specific CD8+ T-cell immune responses. Vaccine, 2014, 32, 1707-1715.	1.7	16
75	Therapeutic Cancer Vaccines: How Much Closer Are We?. BioDrugs, 2018, 32, 1-7.	2.2	15
76	lgG Responses to Tissue-Associated Antigens as Biomarkers of Immunological Treatment Efficacy. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	14
77	MAD-CT-2 Identified as a Novel Melanoma Cancer-testis Antigen Using Phage Immunoblot Analysis. Journal of Immunotherapy, 2007, 30, 675-683.	1.2	13
78	Prioritization of cancer antigens: keeping the target in sight. Expert Review of Vaccines, 2009, 8, 1657-1661.	2.0	13
79	Lenalidomide modulates ILâ€8 and antiâ€prostate antibody levels in men with biochemically recurrent prostate cancer. Prostate, 2012, 72, 487-498.	1.2	13
80	Immunological considerations underlying heat shock protein-mediated cancer vaccine strategies. Immunology Letters, 2018, 193, 1-10.	1.1	13
81	Heterologous vaccination targeting prostatic acid phosphatase (PAP) using DNA and Listeria vaccines elicits superior anti-tumor immunity dependent on CD4+ T cells elicited by DNA priming. Oncolmmunology, 2018, 7, e1456603.	2.1	12
82	Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Cancers, 2020, 12, 2831.	1.7	12
83	Safety and preliminary immunogenicity of JNJ-64041809, a live-attenuated, double-deleted Listeria monocytogenes-based immunotherapy, in metastatic castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, 25, 219-228.	2.0	12
84	A Phase I Study of a DNA Vaccine Targeting Prostatic Acid Phosphatase in Patients with Stage D0 Prostate Cancer. Clinical Genitourinary Cancer, 2005, 4, 215-218.	0.9	11
85	Cellular immunotherapies for prostate cancer. Biomedicine and Pharmacotherapy, 2007, 61, 315-322.	2.5	11
86	Antibody responses to prostateâ€associated antigens in patients with prostatitis and prostate cancer. Prostate, 2011, 71, 134-146.	1.2	11
87	A Randomized Phase II Trial Evaluating Different Schedules of Zoledronic Acid on Bone Mineral Density in Patients With Prostate Cancer Beginning Androgen Deprivation Therapy. Clinical Genitourinary Cancer, 2013, 11, 407-415.	0.9	11
88	Prostate cancer antigens and vaccines, preclinical developments. Cancer Chemotherapy and Biological Response Modifiers, 2005, 22, 247-261.	0.5	11
89	Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma (mRCC): Association of biomarkers with clinical outcomes Journal of Clinical Oncology, 2015, 33, 4500-4500.	0.8	11
90	Immunization with a prostate cancer xenoantigen elicits a xenoantigen epitope-specific T-cell response. Oncolmmunology, 2012, 1, 1546-1556.	2.1	10

#	Article	IF	CITATIONS
91	Mini-intronic plasmid vaccination elicits tolerant LAG3 ⁺ CD8 ⁺ T cells and inferior antitumor responses. Oncolmmunology, 2016, 5, e1223002.	2.1	10
92	Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination. , 2017, 5, 56.		9
93	SSX2 regulates focal adhesion but does not drive the epithelial to mesenchymal transition in prostate cancer. Oncotarget, 2016, 7, 50997-51011.	0.8	9
94	Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages. , 2020, 8, e001510.		9
95	DNA Vaccines for Prostate Cancer. Current Cancer Therapy Reviews, 2012, 8, 245-253.	0.2	8
96	DNA vaccine with pembrolizumab to elicit antitumor responses in patients with metastatic, castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2017, 35, 168-168.	0.8	8
97	Immunotherapy for prostate cancer - recent progress in clinical trials. Clinical Advances in Hematology and Oncology, 2007, 5, 465-74, 477-9.	0.3	8
98	His-tag ELISA for the detection of humoral tumor-specific immunity. BMC Immunology, 2008, 9, 23.	0.9	7
99	Vaccination using peptides spanning the SYT–SSX tumor-specific translocation. Expert Review of Vaccines, 2012, 11, 1401-1404.	2.0	7
100	Safety and Immunological Efficacy of a DNA Vaccine Encoding the Androgen Receptor Ligandâ€Binding Domain (AR‣BD). Prostate, 2017, 77, 812-821.	1.2	7
101	Infectious Tolerance as Seen With 2020 Vision: The Role of IL-35 and Extracellular Vesicles. Frontiers in Immunology, 2020, 11, 1867.	2.2	7
102	Toll-like receptor agonist combinations augment mouse T-cell anti-tumor immunity via IL-12- and interferon AY-mediated suppression of immune checkpoint receptor expression. Oncolmmunology, 2022, 11, 2054758.	2.1	7
103	Identification of prostatic acid phosphatase (PAP) specific HLAâ€DR1â€restricted tâ€cell epitopes. Prostate, 2012, 72, 730-740.	1.2	6
104	Immunization With Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor as a Vaccine Adjuvant Elicits Both a Cellular and Humoral Response to Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor. Blood, 1999, 93, 2653-2659.	0.6	5
105	New approaches to identification of antigenic candidates for future prostate cancer immunotherapy. Update on Cancer Therapeutics, 2006, 1, 273-284.	0.9	4
106	Sipuleucel-T: immunotherapy for advanced prostate cancer. Open Access Journal of Urology, 2011, 3, 49.	0.3	4
107	GM-CSF elicits antibodies to tumor-associated proteins when used as a prostate cancer vaccine adjuvant. Cancer Immunology, Immunotherapy, 2022, 71, 2267-2275.	2.0	4
108	Optimizing Flow Cytometric Analysis of Immune Cells in Samples Requiring Cryopreservation from Tumor-Bearing Mice. Journal of Immunology, 2021, 207, ji2000656.	0.4	3

#	Article	IF	CITATIONS
109	Prostate carcinoma in transgenic Lewis rats - a tumor model for evaluation of immunological treatments. Chinese Clinical Oncology, 2013, 2, .	0.4	3
110	Presence of antigen-specific somatic allelic mutations and splice variants do not predict for immunological response to genetic vaccination. , 2013, 1, 2.		2
111	Identification of Autoantibodies in a Patient With Testicular Cancer and Concurrent Inflammatory Bowel Disease. Journal of Clinical Oncology, 2010, 28, e680-e683.	0.8	1
112	Long-term immune responses elicited by a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with nonmetastatic castrate-resistant prostate cancer Journal of Clinical Oncology, 2013, 31, 135-135.	0.8	1
113	Reply to M.R. Smith et al. Journal of Clinical Oncology, 2010, 28, e59-e59.	0.8	0
114	DNA Vaccines. , 2014, , 1-16.		0
115	DNA Vaccines. , 2017, , 183-198.		0
116	Androgen deprivation as a tumour-immunomodulating treatment. Nature Reviews Urology, 2020, 17, 371-372.	1.9	0
117	DNA Vaccines for Prostate Cancer. Current Cancer Therapy Reviews, 2012, 8, 245-253.	0.2	0
118	Engineering DNA Vaccines for Cancer Therapy. , 2014, , 449-471.		0