List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7884032/publications.pdf Version: 2024-02-01

		87888	123424
83	4,328	38	61
papers	citations	h-index	g-index
91	91	91	2676
all docs	docs citations	times ranked	citing authors

IAN RASTOW

#	Article	IF	CITATIONS
1	Stratigraphic record of continental breakup, offshore NW Australia. Basin Research, 2022, 34, 1220-1243.	2.7	5
2	The crustal structure of the Anatolian Plate from receiver functions and implications for the uplift of the central and eastern Anatolian plateaus. Geophysical Journal International, 2022, 229, 1041-1062.	2.4	8
3	The development of seismic anisotropy below south-central Alaska: evidence from local earthquake shear wave splitting. Geophysical Journal International, 2021, 225, 548-554.	2.4	6
4	AFRP20: New <i>P</i> â€Wavespeed Model for the African Mantle Reveals Two Wholeâ€Mantle Plumes Below East Africa and Neoproterozoic Modification of the Tanzania Craton. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009302.	2.5	29
5	Nature of the Cuvier Abyssal Plain crust, offshore NW Australia. Journal of the Geological Society, 2021, 178, .	2.1	8
6	Seismicity and Crustal Structure of the Southern Main Ethiopian Rift: New Evidence From Lake Abaya. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009831.	2.5	6
7	Bodyâ€Wave Tomographic Imaging of the Turkana Depression: Implications for Rift Development and Plumeâ€Lithosphere Interactions. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009782.	2.5	14
8	The Influence of the North Anatolian Fault and a Fragmenting Slab Architecture on Upper Mantle Seismic Anisotropy in the Eastern Mediterranean. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009896.	2.5	8
9	Upper mantle deformation signatures of craton–orogen interaction in the Carpathian–Pannonian region from SKS anisotropy analysis. Geophysical Journal International, 2020, 220, 2105-2118.	2.4	12
10	The Seismic Moment and Seismic Efficiency of Small Impacts on Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006540.	3.6	16
11	Seismic Tomographic Imaging of the Eastern Mediterranean Mantle: Implications for Terminal‣tage Subduction, the Uplift of Anatolia, and the Development of the North Anatolian Fault. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009009.	2.5	23
12	A reappraisal of the H–î⁰ stacking technique: implications for global crustal structure. Geophysical Journal International, 2019, 219, 1491-1513.	2.4	36
13	Variable modification of continental lithosphere during the Proterozoic Grenville orogeny: Evidence from teleseismic P-wave tomography. Earth and Planetary Science Letters, 2019, 525, 115763.	4.4	20
14	The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shearâ€Wave Splitting. Geochemistry, Geophysics, Geosystems, 2019, 20, 2433-2448.	2.5	32
15	A multicomponent Isabella anomaly: Resolving the physical state of the Sierra Nevada upper mantle from Vp/Vs anisotropy tomography. , 2019, 15, 2018-2042.		11
16	Control of Preâ€rift Lithospheric Structure on the Architecture and Evolution of Continental Rifts: Insights From the Main Ethiopian Rift, East Africa. Tectonics, 2018, 37, 477-496.	2.8	48
17	Precambrian Plate Tectonics in Northern Hudson Bay: Evidence From <i>P</i> and <i>S</i> Wave Seismic Tomography and Analysis of Source Side Effects in Relative Arrivalâ€Time Data Sets. Journal of Geophysical Research: Solid Earth, 2018, 123, 5690-5709.	3.4	11
18	Seismic Imaging of the Alaska Subduction Zone: Implications for Slab Geometry and Volcanism. Geochemistry, Geophysics, Geosystems, 2018, 19, 4541-4560.	2.5	52

#	Article	IF	CITATIONS
19	The Development of Lateâ€6tage Continental Breakup: Seismic Reflection and Borehole Evidence from the Danakil Depression, Ethiopia. Tectonics, 2018, 37, 2848-2862.	2.8	30
20	Seismic anisotropy of Precambrian lithosphere: Insights from Rayleigh wave tomography of the eastern Superior Craton. Journal of Geophysical Research: Solid Earth, 2017, 122, 3754-3775.	3.4	20
21	Structure and dynamics of surface uplift induced by incremental sill emplacement. Geology, 2017, 45, 431-434.	4.4	52
22	The formation of Laurentia: Evidence from shear wave splitting. Earth and Planetary Science Letters, 2017, 479, 170-178.	4.4	15
23	A tale of two orogens: Crustal processes in the Proterozoic Transâ€Hudson and Grenville Orogens, eastern Canada. Tectonics, 2017, 36, 1633-1659.	2.8	28
24	Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes. Tectonics, 2017, 36, 3298-3332.	2.8	72
25	Characterizing Broadband Seismic Noise in Central London. Seismological Research Letters, 2017, 88, 113-124.	1.9	38
26	From Relative to Absolute Teleseismic Travel Times: The Absolute Arrivalâ€Time Recovery Method (AARM). Bulletin of the Seismological Society of America, 2017, 107, 2511-2520.	2.3	11
27	Peering beneath the Canadian crust. Astronomy and Geophysics, 2016, 57, 6.24-6.27.	0.2	2
28	Subduction geometry beneath south central Alaska and its relationship to volcanism. Geophysical Research Letters, 2016, 43, 9509-9517.	4.0	44
29	Lateral Magma Flow in Mafic Sillâ€complexes. Acta Geologica Sinica, 2016, 90, 4-5.	1.4	10
30	Subduction beneath Laurentia modified the eastern North American cratonic edge: Evidence from <i>P</i> wave and <i>S</i> wave tomography. Journal of Geophysical Research: Solid Earth, 2016, 121, 5013-5030.	3.4	33
31	Three billion years of crustal evolution in eastern Canada: Constraints from receiver functions. Journal of Geophysical Research: Solid Earth, 2016, 121, 788-811.	3.4	35
32	Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting. Geophysical Journal International, 2016, 206, 1273-1280.	2.4	14
33	Seismological structure of the 1.8 Ga Transâ€Hudson Orogen of North America. Geochemistry, Geophysics, Geosystems, 2016, 17, 2421-2433.	2.5	19
34	The stratigraphic record of prebreakup geodynamics: Evidence from the Barrow Delta, offshore Northwest Australia. Tectonics, 2016, 35, 1935-1968.	2.8	29
35	Lateral magma flow in mafic sill complexes. , 2016, 12, 809-841.		209
36	The origin of along-rift variations in faulting and magmatism in the Ethiopian Rift. Tectonics, 2015, 34, 464-477.	2.8	65

#	Article	IF	CITATIONS
37	Monitoring the Earthquake Activity in an Area with Shale Gas Potential in Southeastern New Brunswick, Canada. Seismological Research Letters, 2015, 86, 1068-1077.	1.9	5
38	Variability and origin of seismic anisotropy across eastern Canada: Evidence from shear wave splitting measurements. Journal of Geophysical Research: Solid Earth, 2015, 120, 8404-8421.	3.4	16
39	CANâ€HK: An a Priori Crustal Model for the Canadian Shield. Seismological Research Letters, 2015, 86, 1374-1382.	1.9	6
40	Upper mantle anisotropy of the Borborema Province, NE Brazil: Implications for intra-plate deformation and sub-cratonic asthenospheric flow. Tectonophysics, 2015, 657, 81-93.	2.2	20
41	Magma-induced axial subsidence during final-stage rifting: Implications for the development of seaward-dipping reflectors. , 2015, 11, 563-571.		31
42	Mantle flow geometry from ridge to trench beneath the Gorda–Juan de Fuca plate system. Nature Geoscience, 2015, 8, 965-968.	12.9	45
43	The Hudson Bay Lithospheric Experiment (HuBLE): insights into Precambrian plate tectonics and the development of mantle keels. Geological Society Special Publication, 2015, 389, 41-67.	1.3	18
44	Rift-Related Morphology of the Afar Depression. World Geomorphological Landscapes, 2015, , 251-274.	0.3	9
45	Locating microseismic events using borehole data. Geophysical Prospecting, 2014, 62, 34-49.	1.9	35
46	The development of magmatism along the Cameroon Volcanic Line: Evidence from seismicity and seismic anisotropy. Journal of Geophysical Research: Solid Earth, 2014, 119, 4233-4252.	3.4	55
47	Thermal models of dyke intrusion during development of continent–ocean transition. Earth and Planetary Science Letters, 2014, 385, 145-153.	4.4	62
48	The protracted development of focused magmatic intrusion during continental rifting. Tectonics, 2014, 33, 875-897.	2.8	47
49	The development of extension and magmatism in the Red Sea rift of Afar. Tectonophysics, 2013, 607, 98-114.	2.2	72
50	Seismic imaging of the lithosphere beneath Hudson Bay: Episodic growth of the Laurentian mantle keel. Earth and Planetary Science Letters, 2013, 373, 179-193.	4.4	61
51	Melting during late-stage rifting in Afar is hot and deep. Nature, 2013, 499, 70-73.	27.8	85
52	Mantle upwelling and initiation of rift segmentation beneath the Afar Depression. Geology, 2013, 41, 635-638.	4.4	76
53	Caveats on tomographic images. Terra Nova, 2013, 25, 259-281.	2.1	94
54	Elevated mantle temperature beneath East Africa. Geology, 2012, 40, 27-30.	4.4	132

#	Article	IF	CITATIONS
55	The development of magmatism along the Cameroon Volcanic Line: Evidence from teleseismic receiver functions. Tectonics, 2012, 31, .	2.8	59
56	Pâ€wave tomography of eastern North America: Evidence for mantle evolution from Archean to Phanerozoic, and modification during subsequent hot spot tectonism. Journal of Geophysical Research, 2012, 117, .	3.3	31
57	Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence. Nature Geoscience, 2012, 5, 406-409.	12.9	100
58	Crustal anisotropy beneath Hudson Bay from ambient noise tomography: Evidence for postâ€orogenic lowerâ€crustal flow?. Journal of Geophysical Research, 2012, 117, .	3.3	31
59	Relative arrival-time upper-mantle tomography and the elusive background mean. Geophysical Journal International, 2012, 190, 1271-1278.	2.4	48
60	The magmaâ€assisted removal of Arabia in Afar: Evidence from dike injection in the Ethiopian rift captured using InSAR and seismicity. Tectonics, 2011, 30, .	2.8	62
61	Pulses of deformation reveal frequently recurring shallow magmatic activity beneath the Main Ethiopian Rift. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	135
62	Implications of a simple mantle transition zone beneath cratonic North America. Earth and Planetary Science Letters, 2011, 312, 28-36.	4.4	34
63	Crustal structure beneath Hudson Bay from ambient-noise tomography: implications for basin formation. Geophysical Journal International, 2011, 184, 65-82.	2.4	46
64	Lithosphere-asthenosphere interaction beneath Ireland from joint inversion of teleseismic P-wave delay times and GRACE gravity. Geophysical Journal International, 2011, 184, 1379-1396.	2.4	16
65	The Hudson Bay Lithospheric Experiment. Astronomy and Geophysics, 2011, 52, 6.21-6.24.	0.2	8
66	The protracted development of the continent–ocean transition in Afar. Nature Geoscience, 2011, 4, 248-250.	12.9	134
67	Insights into extensional processes during magma assisted rifting: Evidence from aligned scoria cones. Journal of Volcanology and Geothermal Research, 2011, 201, 83-96.	2.1	79
68	Precambrian plate tectonics: Seismic evidence from northern Hudson Bay, Canada. Geology, 2011, 39, 91-94.	4.4	43
69	Towards a better understanding of African topography: a review of passive-source seismic studies of the African crust and upper mantle. Geological Society Special Publication, 2011, 357, 343-371.	1.3	67
70	The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE): Probing the transition from continental rifting to incipient seafloor spreading. , 2011, , .		34
71	Meltâ€induced seismic anisotropy and magma assisted rifting in Ethiopia: Evidence from surface waves. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	111
72	Precambrian crustal evolution: Seismic constraints from the Canadian Shield. Earth and Planetary Science Letters, 2010, 297, 655-666.	4.4	102

#	Article	IF	CITATIONS
73	Nature of the Moho beneath the Scottish Highlands from a receiver function perspective. Tectonophysics, 2009, 479, 214-222.	2.2	12
74	Lower crustal earthquakes near the Ethiopian rift induced by magmatic processes. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	85
75	Crustal tomographic imaging of a transitional continental rift: the Ethiopian rift. Geophysical Journal International, 2008, 172, 1033-1048.	2.4	80
76	Upper mantle seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the African lowâ€velocity anomaly. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	178
77	Spatial and temporal constraints on sources of seismic anisotropy: Evidence from the Scottish highlands. Geophysical Research Letters, 2007, 34, .	4.0	43
78	Lithospheric modification during crustal extension in the Main Ethiopian Rift. Journal of Geophysical Research, 2007, 112, .	3.3	110
79	The August 2002 earthquake sequence in north Afar: Insights into the neotectonics of the Danakil microplate. Journal of African Earth Sciences, 2007, 48, 70-79.	2.0	45
80	Mantle upwellings, melt migration and the rifting of Africa: insights from seismic anisotropy. Geological Society Special Publication, 2006, 259, 55-72.	1.3	72
81	Crustal structure of the northern Main Ethiopian Rift from receiver function studies. Geological Society Special Publication, 2006, 259, 253-267.	1.3	71
82	Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift. Geophysical Journal International, 2005, 162, 479-493.	2.4	170
83	Magma-assisted rifting in Ethiopia. Nature, 2005, 433, 146-148.	27.8	302