
## Motonori Tomita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7882595/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Whole-Genome Sequencing Revealed a Late-Maturing Isogenic Rice Koshihikari Integrated with Hd16<br>Gene Derived from an Ise Shrine Mutant. International Journal of Genomics, 2022, 2022, 1-12.                                                                                                       | 1.6 | 1         |
| 2  | Year-round flowering gene e1, a mutation at the E1 locus on rice chromosome 7 and its combination with green revolution gene sd1 in an isogenic cell line. Gene, 2022, 815, 146166.                                                                                                                   | 2.2 | 0         |
| 3  | Gene structure of three kinds of vacuolar-type Na+/H+ antiporters including TaNHX2 transcribed in bread wheat. Genetics and Molecular Biology, 2021, 44, e20200207.                                                                                                                                   | 1.3 | 1         |
| 4  | ABA-induced serine/threonine protein kinase gene transcribed in rye (Secale cereale L.). Cereal<br>Research Communications, 2021, 49, 21-30.                                                                                                                                                          | 1.6 | 1         |
| 5  | Clustered and dispersed chromosomal distribution of the two classes of Revolver transposon family in rye (Secale cereale). Journal of Applied Genetics, 2021, 62, 365-372.                                                                                                                            | 1.9 | 0         |
| 6  | Estimation of Rice Yield Loss Using a Simple Linear Regression Model for Bacterial Blight Disease.<br>Bangladesh Rice Journal, 2020, 23, 73-79.                                                                                                                                                       | 0.8 | 7         |
| 7  | Mapping QTLs underpin nutrition components in aromatic rice germplasm. PLoS ONE, 2020, 15, e0234395.                                                                                                                                                                                                  | 2.5 | 13        |
| 8  | Agro-morphological Characterization of Bangladeshi Aromatic Rice (Oryza sativa L.) Germplasm Based<br>on Qualitative Traits. Bangladesh Rice Journal, 2020, 22, 41-54.                                                                                                                                | 0.8 | 1         |
| 9  | Mapping QTLs underpin nutrition components in aromatic rice germplasm. , 2020, 15, e0234395.                                                                                                                                                                                                          |     | 0         |
| 10 | Mapping QTLs underpin nutrition components in aromatic rice germplasm. , 2020, 15, e0234395.                                                                                                                                                                                                          |     | 0         |
| 11 | Mapping QTLs underpin nutrition components in aromatic rice germplasm. , 2020, 15, e0234395.                                                                                                                                                                                                          |     | 0         |
| 12 | Mapping QTLs underpin nutrition components in aromatic rice germplasm. , 2020, 15, e0234395.                                                                                                                                                                                                          |     | 0         |
| 13 | Mapping QTLs underpin nutrition components in aromatic rice germplasm. , 2020, 15, e0234395.                                                                                                                                                                                                          |     | 0         |
| 14 | Mapping QTLs underpin nutrition components in aromatic rice germplasm. , 2020, 15, e0234395.                                                                                                                                                                                                          |     | 0         |
| 15 | Mapping QTLs underpin nutrition components in aromatic rice germplasm. , 2020, 15, e0234395.                                                                                                                                                                                                          |     | 0         |
| 16 | Mapping QTLs underpin nutrition components in aromatic rice germplasm. , 2020, 15, e0234395.                                                                                                                                                                                                          |     | 0         |
| 17 | Identification of Rice Large Grain Gene GW2 by Whole-Genome Sequencing of a Large Grain-Isogenic<br>Line Integrated with Japonica Native Gene and Its Linkage Relationship with the Co-integrated<br>Semidwarf Gene d60 on Chromosome 2. International Journal of Molecular Sciences, 2019, 20, 5442. | 4.1 | 2         |
| 18 | Rice Novel Semidwarfing Gene d60 Can Be as Effective as Green Revolution Gene sd1. Plants, 2019, 8, 464.                                                                                                                                                                                              | 3.5 | 8         |

2

Motonori Tomita

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Semidwarf Gene d60 Affected by Ubiquitous Gamete Lethal Gene gal Produced Rare Double Dwarf with<br>d30 via Recombination Breaking Repulsion-Phase Linkage on Rice Chromosome 2. Genes, 2019, 10, 874.                                                         | 2.4 | Ο         |
| 20 | The Gametic Non-Lethal Gene Gal on Chromosome 5 Is Indispensable for the Transmission of the Co-Induced Semidwarfing Gene d60 in Rice. Biology, 2019, 8, 94.                                                                                                   | 2.8 | 2         |
| 21 | Methodology to identify dwarfing gene d60 that complements gamete lethal gene gal by<br>Next-generation DNA sequencing analysis. Medical Research Archives, 2019, 7, .                                                                                         | 0.2 | Ο         |
| 22 | Genetic Performance of the Semidwarfing Allele <i> sd1</i> Derived from a Japonica Rice Cultivar and<br>Minimum Requirements to Detect Its Single-Nucleotide Polymorphism by MiSeq Whole-Genome<br>Sequencing. BioMed Research International, 2018, 2018, 1-7. | 1.9 | 11        |
| 23 | Thinopyrum ponticum Chromatin-Integrated Wheat Genome Shows Salt-Tolerance at Germination Stage. International Journal of Molecular Sciences, 2015, 16, 4512-4517.                                                                                             | 4.1 | 8         |
| 24 | Identification of an Isogenic Semidwarf Rice Cultivar Carrying the Green Revolution sd1 Gene by Multiplex Codominant ASP-PCR and SSR Markers. Biochemical Genetics, 2013, 51, 530-542.                                                                         | 1.7 | 6         |
| 25 | Thinopyrum 7Ai-1-derived small chromatin with Barley Yellow Dwarf Virus (BYDV) resistance gene integrated into the wheat genome with retrotransposon. Cytology and Genetics, 2013, 47, 1-7.                                                                    | 0.5 | 9         |
| 26 | Combining two semidwarfing genes <i>d60</i> and <i>sd1</i> for reduced height in â€~Minihikari', a new<br>rice germplasm in the â€~Koshihikari' genetic background. Genetical Research, 2012, 94, 235-244.                                                     | 0.9 | 7         |
| 27 | Rye chromosome-specific polymerase chain reaction products developed by primers designed from the EcoO109I recognition site. Genome, 2012, 55, 370-382.                                                                                                        | 2.0 | 8         |
| 28 | Genomic, RNA, and ecological divergences of the Revolvertransposon-like multi-gene family in<br>Triticeae. BMC Evolutionary Biology, 2011, 11, 269.                                                                                                            | 3.2 | 8         |
| 29 | Revolver and Superior: Novel Transposon-Like Gene Families of the Plant Kingdom. Current Genomics, 2010, 11, 62-69.                                                                                                                                            | 1.6 | 3         |
| 30 | Long-culm mutations with dominant genes are induced by mPing transposon in rice. Hereditas, 2010, 147, 256-263.                                                                                                                                                | 1.4 | 1         |
| 31 | Effective Isolation of Retrotransposons and Repetitive DNA Families from the Wheat Genome. Journal of Integrative Plant Biology, 2010, 52, 679-691.                                                                                                            | 8.5 | 3         |
| 32 | Kpn I-repetitive DNA element tandemly clustered on subtelomeric regions of Triticeae genome.<br>Caryologia, 2010, 63, 91-98.                                                                                                                                   | 0.3 | 0         |
| 33 | Centromeric distribution of 350-family in <i>Dasypyrum villosum</i> and its application to identifying <i>Dasypyrum</i> chromatin in the wheat genome. Hereditas, 2009, 146, 58-66.                                                                            | 1.4 | 32        |
| 34 | Genomic Subtraction Recovers Rye-Specific DNA Elements Enriched in the Rye Genome. Molecular<br>Biotechnology, 2009, 42, 160-167.                                                                                                                              | 2.4 | 10        |
| 35 | Introgression of Green Revolution sd1 gene into isogenic genome of rice super cultivar Koshihikari to<br>create novel semidwarf cultivar â€~Hikarishinseiki' (Koshihikari-sd1). Field Crops Research, 2009, 114,<br>173-181.                                   | 5.1 | 23        |
| 36 | <i>Superior</i> : A Novel Repetitive DNA Element Dispersed in the Rye Genome. Cytogenetic<br>and Genome Research, 2009, 125, 306-320.                                                                                                                          | 1.1 | 8         |

Motonori Tomita

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Quantitative variation of Revolver transposon-like genes in synthetic wheat and their structural relationship with the LARD element. Breeding Science, 2009, 59, 629-636.                                                                       | 1.9 | 4         |
| 38 | Revolver is a New Class of Transposon-like Gene Composing the Triticeae Genome. DNA Research, 2008,<br>15, 49-62.                                                                                                                               | 3.4 | 26        |
| 39 | Lodging-related Characteristics of Hikari-Shinseiki, an Isogenic Variety of Koshihikari. Japanese Journal<br>of Crop Science, 2008, 77, 505-510.                                                                                                | 0.2 | 0         |
| 40 | Title is missing!. Euphytica, 2003, 132, 167-174.                                                                                                                                                                                               | 1.2 | 27        |
| 41 | Positive effect of the high-molecular-weight glutenin allele, Glu-D1d, on the bread-making quality of common wheat. Plant Breeding, 2003, 122, 279-280.                                                                                         | 1.9 | 5         |
| 42 | Production of Somatic Hybrid Plants between Japanese Bunching Onion(Allium fistulosum L.) and Bulb<br>Onion(A. cepa L.) via Electrofusion Journal of the Japanese Society for Horticultural Science, 2002, 71,<br>623-631.                      | 0.5 | 7         |
| 43 | Establishment of Culture Medium for Protoplasts and Plant Regeneration in Japanese Bunching Onion<br>(Allium fistulosum L.) Journal of the Japanese Society for Horticultural Science, 2001, 70, 431-437.                                       | 0.5 | 3         |
| 44 | Cytogenetic and Molecular Markers Mapping of Translocations in the Wheat Cultivar Shirodaruma and Its Ancestor Daruma Cytologia, 1998, 63, 115-124.                                                                                             | 0.6 | 0         |
| 45 | Introduction of multi-alien chromatins carrying different powdery mildew-resistant genes from rye<br>and Haynaldia villosa into wheat genome Genes and Genetic Systems, 1998, 73, 377-384.                                                      | 0.7 | 4         |
| 46 | ldentification and Breeding Significance of Translocated Chromosomes in a Japanese Common Wheat<br>Variety Eshimashinriki Breeding Science, 1994, 44, 391-396.                                                                                  | 0.2 | 0         |
| 47 | Detection and Identification of Chromosomal Translocations in Japanese Common Wheat Varieties<br>Breeding Science, 1992, 42, 573-582.                                                                                                           | 0.2 | 5         |
| 48 | Gene analysis for the semidwarfism of two mutant strains, Hokuriku 100 and Kanto 79, induced from a<br>rice variety Koshihikari. Studies on the utility of artificial mutations in plant breeding XVIII Breeding<br>Science, 1990, 40, 103-117. | 0.2 | 10        |
| 49 | Transcription of Rice Green Revolution Gene <i>sd1</i> is Clarified by Comparative RNA Diagnosis<br>Using the Isogenic Background. Genomics and Applied Biology, 0, , .                                                                         | 0.0 | 1         |