David T Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/788078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Warming Breakeven Times for Infrastructure Construction Emissions Are Underestimated. ACS Sustainable Chemistry and Engineering, 2022, 10, 1753-1758.	3.2	8
2	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	3.2	1
3	Modeling air emissions from complex facilities at detailed temporal and spatial resolution: The Methane Emission Estimation Tool (MEET). Science of the Total Environment, 2022, 824, 153653.	3.9	7
4	A Methane Emission Estimation Tool (MEET) for predictions of emissions from upstream oil and gas well sites with fine scale temporal and spatial resolution: Model structure and applications. Science of the Total Environment, 2022, 829, 154277.	3.9	16
5	Assessing the impact of episodic flare emissions on ozone formation in the Houston-Galveston-Brazoria area of Texas. Science of the Total Environment, 2022, 828, 154276.	3.9	2
6	Mapping Greenhouse Gas Emissions of the U.S. Chemical Manufacturing Industry: The Effect of Feedstock Sourcing and Upstream Emissions Allocation. ACS Sustainable Chemistry and Engineering, 2022, 10, 5932-5938.	3.2	7
7	Probing the Impact of an Energy and Transportation Paradigm Shift on the Petrochemicals Industry. Industrial & Engineering Chemistry Research, 2022, 61, 12169-12179.	1.8	1
8	An Updated Anthropogenic Emission Inventory of Reactive Chlorine Precursors in China. ACS Earth and Space Chemistry, 2022, 6, 1846-1857.	1.2	3
9	Greenhouse Gas Emissions from LNG Infrastructure Construction: Implications for Short-Term Climate Impacts. ACS Sustainable Chemistry and Engineering, 2022, 10, 8539-8548.	3.2	2
10	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
11	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
12	<i>ACS Sustainable Chemistry & Engineering</i> Welcomes Expanded Editorial Boards with New Initiatives. ACS Sustainable Chemistry and Engineering, 2021, 9, 1-2.	3.2	2
13	Consistent Metrics Needed for Quantifying Methane Emissions from Upstream Oil and Gas Operations. Environmental Science and Technology Letters, 2021, 8, 345-349.	3.9	15
14	ACS Sustainable Chemistry & Engineering Invites Contributions to a Virtual Special Issue on The Circular Economy of Plastics. ACS Sustainable Chemistry and Engineering, 2021, 9, 1425-1426.	3.2	5
15	Projecting the Temporal Evolution of Methane Emissions from Oil and Gas Production Basins. Environmental Science & Technology, 2021, 55, 2811-2819.	4.6	4
16	A Searchable Database for Prediction of Emission Compositions from Upstream Oil and Gas Sources. Environmental Science & Technology, 2021, 55, 3210-3218.	4.6	6
17	Shaping Effective Practices for Incorporating Sustainability Assessment in Manuscripts Submitted to <i>ACS Sustainable Chemistry & Engineering</i> : An Initiative by the Editors. ACS Sustainable Chemistry and Engineering, 2021, 9, 3977-3978.	3.2	16
18	ACS Sustainable Chemistry & Engineering Welcomes Manuscripts on Advanced E-Waste Recycling. ACS Sustainable Chemistry and Engineering, 2021, 9, 3624-3625.	3.2	2

#	Article	IF	CITATIONS
19	Expectations for Manuscripts Contributing to the Field on Management of Synthetic Chemicals in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 3376-3378.	3.2	4
20	Lab to Market: Where the Rubber Meets the Road for Sustainable Chemical Technologies. ACS Sustainable Chemistry and Engineering, 2021, 9, 2987-2989.	3.2	3
21	Ethanol from Sugarcane and the Brazilian Biomass-Based Energy and Chemicals Sector. ACS Sustainable Chemistry and Engineering, 2021, 9, 4293-4295.	3.2	14
22	Use of Short Duration Measurements to Estimate Methane Emissions at Oil and Gas Production Sites. Environmental Science and Technology Letters, 2021, 8, 463-467.	3.9	20
23	Shaping Effective Practices for Incorporating Sustainability Assessment in Manuscripts Submitted to <i>ACS Sustainable Chemistry & Engineering</i> : Catalysis and Catalytic Processes. ACS Sustainable Chemistry and Engineering, 2021, 9, 4936-4940.	3.2	34
24	Green Chemistry: A Framework for a Sustainable Future. Organometallics, 2021, 40, 1801-1805.	1.1	4
25	Comparing Greenhouse Gas Impacts from Domestic Coal and Imported Natural Gas Electricity Generation in China. ACS Sustainable Chemistry and Engineering, 2021, 9, 8759-8769.	3.2	13
26	Anthropogenic emissions of atomic chlorine precursors in the Yangtze River Delta region, China. Science of the Total Environment, 2021, 771, 144644.	3.9	10
27	Green Chemistry: A Framework for a Sustainable Future. Organic Letters, 2021, 23, 4935-4939.	2.4	6
28	Green Chemistry: A Framework for a Sustainable Future. Environmental Science & Technology, 2021, 55, 8459-8463.	4.6	12
29	Green Chemistry: A Framework for a Sustainable Future. Organic Process Research and Development, 2021, 25, 1455-1459.	1.3	18
30	Green Chemistry: A Framework for a Sustainable Future. Journal of Organic Chemistry, 2021, 86, 8551-8555.	1.7	4
31	Green Chemistry: A Framework for a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2021, 9, 8336-8340.	3.2	2
32	Green Chemistry: A Framework for a Sustainable Future. Environmental Science and Technology Letters, 2021, 8, 487-491.	3.9	7
33	Green Chemistry: A Framework for a Sustainable Future. Industrial & Engineering Chemistry Research, 2021, 60, 8964-8968.	1.8	3
34	Green Chemistry: A Framework for a Sustainable Future. ACS Omega, 2021, 6, 16254-16258.	1.6	7
35	Heterogeneous Formation of HONO Catalyzed by CO ₂ . Environmental Science & Technology, 2021, 55, 12215-12222.	4.6	16
36	Systems Analysis of Natural Gas Liquid Resources for Chemical Manufacturing: Strategic Utilization of Ethane. Industrial & amp; Engineering Chemistry Research, 2021, 60, 12377-12389.	1.8	4

#	Article	IF	CITATIONS
37	LNG Supply Chains: A Supplier-Specific Life-Cycle Assessment for Improved Emission Accounting. ACS Sustainable Chemistry and Engineering, 2021, 9, 10857-10867.	3.2	23
38	Assessment of the effects of straw burning bans in China: Emissions, air quality, and health impacts. Science of the Total Environment, 2021, 789, 147935.	3.9	63
39	Organic acid-ammonia ion-induced nucleation pathways unveiled by quantum chemical calculation and kinetics modeling: A case study of 3-methyl-1,2,3-butanetricarboxylic acid. Chemosphere, 2021, 284, 131354.	4.2	4
40	Geospatial Network Approach for Assessing Economic Potential of Ethylene-to-Fuel Technology in the Marcellus Shale Region. Industrial & Engineering Chemistry Research, 2021, 60, 14801-14814.	1.8	3
41	Expectations for Perspectives in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16528-16530.	3.2	1
42	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	3.2	6
43	An emission inventory for Cl2 and HOCl in Shanghai, 2017. Atmospheric Environment, 2020, 223, 117220.	1.9	7
44	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
45	Expectations for Manuscripts Contributing to the Field of Solvents in <i>ACS Sustainable Chemistry & amp; Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 14627-14629.	3.2	23
46	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
47	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
48	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
49	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
50	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
51	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
52	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0

#	Article	IF	CITATIONS
55	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
58	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
61	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
64	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
65	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
66	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
67	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
68	Expectations for Manuscripts in ACS Sustainable Chemistry & Engineering: Scope Summary and Call for Creativity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16046-16047.	3.2	2
69	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
70	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
71	Expectations for Manuscripts on Biomass Feedstocks and Processing in <i>ACS Sustainable Chemistry & amp; Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 11031-11032.	3.2	2
72	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
74	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
75	Projecting the Temporal Evolution of Methane Emissions from Oil and Gas Production Sites. Environmental Science & Technology, 2020, 54, 14172-14181.	4.6	20
76	Remembering Professor, Academician, and Editor Lina Zhang. ACS Sustainable Chemistry and Engineering, 2020, 8, 16385-16385.	3.2	0
77	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	Ο
78	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
79	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
80	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
81	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	Ο
82	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
83	Constant Renewal: An Open Call for <i>ACS Sustainable Chemistry & Engineering</i> Editorial Advisory Board and Early Career Board Members. ACS Sustainable Chemistry and Engineering, 2020, 8, 12731-12732.	3.2	1
84	Huang, Luterbacher, and Mauter: Winners of the 2021 <i>ACS Sustainable Chemistry & Engineering</i> Lectureship Awards. ACS Sustainable Chemistry and Engineering, 2020, 8, 17607-17607.	3.2	1
85	Field Trial of Methane Emission Quantification Technologies. , 2020, , .		8
86	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
87	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	Ο
88	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
89	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
90	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0

#	Article	IF	CITATIONS
91	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
92	Revised Estimation Method for Emissions from Automated Plunger Lift Liquid Unloadings. Environments - MDPI, 2020, 7, 25.	1.5	0
93	Methane Emissions from Gathering Compressor Stations in the U.S Environmental Science & Technology, 2020, 54, 7552-7561.	4.6	24
94	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
95	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
96	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
97	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
98	The Changing Structure of Scientific Communication: Expanding the Nature of Letters Submissions to ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 8469-8470.	3.2	0
99	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
100	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
101	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
102	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
103	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
104	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
105	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
106	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
107	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
108	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0

#	Article	IF	CITATIONS
109	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
110	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
111	Expectations for Manuscripts with Nanoscience and Nanotechnology Elements in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 7751-7752.	3.2	5
112	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
113	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
114	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
115	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
116	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
117	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
118	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
119	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
120	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
121	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
122	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
123	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
124	Expectations for Papers on Photochemistry, Photoelectrochemistry, and Electrochemistry for Energy Conversion and Storage in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 3038-3039.	3.2	4
125	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
126	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0

#	Article	IF	CITATIONS
127	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	ο
128	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
129	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
130	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
131	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
132	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
133	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
134	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
135	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
136	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
137	Formation Mechanisms of Iodine–Ammonia Clusters in Polluted Coastal Areas Unveiled by Thermodynamics and Kinetic Simulations. Environmental Science & Technology, 2020, 54, 9235-9242.	4.6	18
138	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
139	Expectations for Manuscripts on Industrial Ecology in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 9599-9600.	3.2	2
140	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
141	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	Ο
142	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
143	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
144	Product Value Modeling for a Natural Gas Liquid to Liquid Transportation Fuel Process. Industrial & & & & & & & & & & & & & & & & & & &	1.8	8

#	Article	IF	CITATIONS
145	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
146	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
147	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
148	Expectations for Manuscripts on Catalysis in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 4995-4996.	3.2	14
149	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
150	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
151	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
152	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
153	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
154	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
155	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
156	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
157	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
158	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
159	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
160	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
161	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
162	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0

#	Article	IF	CITATIONS
163	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
164	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
165	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	Ο
166	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
167	An Earth Day Message: Earthrise. ACS Sustainable Chemistry and Engineering, 2020, 8, 5815-5816.	3.2	Ο
168	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
169	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
170	Expectations for Papers on Sustainable Materials in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 1703-1704.	3.2	9
171	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
172	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
173	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	Ο
174	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
175	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
176	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
177	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
178	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
179	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
180	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1

#	Article	IF	CITATIONS
181	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
182	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
183	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
184	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
185	Network Modeling of the U.S. Petrochemical Industry under Raw Material and Hurricane Harvey Disruptions. Industrial & Engineering Chemistry Research, 2019, 58, 12801-12815.	1.8	7
186	Aggregation and Allocation of Greenhouse Gas Emissions in Oil and Gas Production: Implications for Life-Cycle Greenhouse Gas Burdens. ACS Sustainable Chemistry and Engineering, 2019, 7, 17065-17073.	3.2	15
187	Greenhouse Gas Emissions of Transportation Fuels from Shale Gas-Derived Natural Gas Liquids. Procedia CIRP, 2019, 80, 346-351.	1.0	3
188	National Academies Report Defines a Research Agenda for Chemical, Biochemical and Mineralization Approaches to Gaseous Carbon Waste Utilization. ACS Sustainable Chemistry and Engineering, 2019, 7, 3702-3709.	3.2	3
189	Multiday Measurements of Pneumatic Controller Emissions Reveal the Frequency of Abnormal Emissions Behavior at Natural Gas Gathering Stations. Environmental Science and Technology Letters, 2019, 6, 348-352.	3.9	13
190	Use of Light Alkane Fingerprints in Attributing Emissions from Oil and Gas Production. Environmental Science & Technology, 2019, 53, 5483-5492.	4.6	20
191	The impact of power plant emission variability and fuel switching on the air quality of Kuwait. Science of the Total Environment, 2019, 672, 593-603.	3.9	10
192	Baltrusaitis, Barta, and Wang: 2020 Winners of the <i>ACS Sustainable Chemistry & Engineering</i> Lectureship Awards. ACS Sustainable Chemistry and Engineering, 2019, 7, 18197-18197.	3.2	0
193	Why Wasn't My <i>ACS Sustainable Chemistry & Engineering</i> Manuscript Sent Out for Review?. ACS Sustainable Chemistry and Engineering, 2019, 7, 1-2.	3.2	5
194	<i>ACS Sustainable Chemistry & Engineering</i> Virtual Special Issue on Promoting the Development and Use of Quantitative Sustainabilty Metrics. ACS Sustainable Chemistry and Engineering, 2018, 6, 4422-4422.	3.2	5
195	Advancing the Use of Sustainability Metrics in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 1-1.	3.2	34
196	Uses for expanded production of natural gas liquids: chemicals or power?. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e258.	1.9	1
197	ACS Virtual Issue on Multicomponent Systems: Absorption, Adsorption, and Diffusion. Journal of Chemical & Engineering Data, 2018, 63, 3651-3651.	1.0	9
198	Dauenhauer, Vignolini, and Wu: 2019 Winners of the <i>ACS Sustainable Chemistry & Engineering</i> Lectureship Awards. ACS Sustainable Chemistry and Engineering, 2018, 6, 11144-11144.	3.2	0

#	Article	IF	CITATIONS
199	<i>ACS Sustainable Chemistry & Engineering</i> Appoints New Associate Editors Gathergood, Gong, Meier, and Qiu. ACS Sustainable Chemistry and Engineering, 2018, 6, 8063-8063.	3.2	0
200	Heterogeneous production of Cl ₂ from particulate chloride: Effects of composition and relative humidity. AICHE Journal, 2018, 64, 3151-3158.	1.8	6
201	Assessment of methane emissions from the U.S. oil and gas supply chain. Science, 2018, 361, 186-188.	6.0	519
202	Super-emitters in natural gas infrastructure are caused by abnormal process conditions. Nature Communications, 2017, 8, 14012.	5.8	118
203	The Global Reach of <i>ACS Sustainable Chemistry & Engineering</i> and Welcoming Lina Zhang. ACS Sustainable Chemistry and Engineering, 2017, 5, 2034-2034.	3.2	0
204	<i>ACS Sustainable Chemistry & Engineering</i> 's Impact Factor Continues To Rise. ACS Sustainable Chemistry and Engineering, 2017, 5, 5617-5617.	3.2	0
205	Four Years of ACS Sustainable Chemistry & Engineering: Reflections and New Developments. ACS Sustainable Chemistry and Engineering, 2017, 5, 1-2.	3.2	8
206	Luque, Yan, You: 2018 Winners of the <i>ACS Sustainable Chemistry & Engineering</i> Lectureship Awards. ACS Sustainable Chemistry and Engineering, 2017, 5, 7450-7450.	3.2	1
207	ACS Virtual Issue on Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2017, 62, 1927-1928.	1.0	6
208	Combining innovative science and policy to improve air quality in cities with refining and chemicals manufacturing: The case study of Houston, Texas, USA. Frontiers of Chemical Science and Engineering, 2017, 11, 293-304.	2.3	9
209	Variability in Spatially and Temporally Resolved Emissions and Hydrocarbon Source Fingerprints for Oil and Gas Sources in Shale Gas Production Regions. Environmental Science & Technology, 2017, 51, 12016-12026.	4.6	30
210	Comparison of Attributional and Consequential Life-Cycle Assessments in Chemical Manufacturing. , 2017, , 339-347.		5
211	Impact of New Manufacturing Technologies on the Petrochemical Industry in the United States: A Methane-to-Aromatics Case Study. Industrial & Engineering Chemistry Research, 2016, 55, 5366-5372.	1.8	10
212	Carbon dioxide, methane and black carbon emissions from upstream oil and gas flaring in the United States. Current Opinion in Chemical Engineering, 2016, 13, 119-123.	3.8	19
213	Opportunities for Chemical Manufacturing Using Natural Gas Feedstocks in the San Juan Basin. Industrial & Engineering Chemistry Research, 2016, 55, 8480-8489.	1.8	4
214	Twenty-Five Years of Green Chemistry and Green Engineering: The End of the Beginning. ACS Sustainable Chemistry and Engineering, 2016, 4, 5820-5820.	3.2	30
215	Green Engineering Education in Chemical Engineering Curricula: A Quarter Century of Progress and Prospects for Future Transformations. ACS Sustainable Chemistry and Engineering, 2016, 4, 5850-5854.	3.2	14
216	Emissions from oil and gas operations in the United States and their air quality implications. Journal of the Air and Waste Management Association, 2016, 66, 1165-1170.	0.9	1

#	Article	IF	CITATIONS
217	Emissions from oil and gas operations in the United States and their air quality implications. Journal of the Air and Waste Management Association, 2016, 66, 549-575.	0.9	66
218	Attributing Atmospheric Methane to Anthropogenic Emission Sources. Accounts of Chemical Research, 2016, 49, 1344-1350.	7.6	27
219	Dynamic Management of NO _{<i>x</i>} and SO ₂ Emissions in the Texas and Mid-Atlantic Electric Power Systems and Implications for Air Quality. Environmental Science & Technology, 2016, 50, 1611-1619.	4.6	19
220	Quantifying regional, seasonal and interannual contributions of environmental factors on isoprene and monoterpene emissions estimates over eastern Texas. Atmospheric Environment, 2015, 106, 120-128.	1.9	22
221	Allocating Methane Emissions to Natural Gas and Oil Production from Shale Formations. ACS Sustainable Chemistry and Engineering, 2015, 3, 492-498.	3.2	29
222	Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Pneumatic Controllers. Environmental Science & Technology, 2015, 49, 633-640.	4.6	123
223	Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Liquid Unloadings. Environmental Science & Technology, 2015, 49, 641-648.	4.6	86
224	Impact of Natural Gas and Natural Gas Liquids Supplies on the United States Chemical Manufacturing Industry: Production Cost Effects and Identification of Bottleneck Intermediates. ACS Sustainable Chemistry and Engineering, 2015, 3, 451-459.	3.2	34
225	Response to Comment on "Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Pneumatic Controllers― Environmental Science & Technology, 2015, 49, 3983-3984.	4.6	10
226	Comparison of regional and global land cover products and the implications for biogenic emission modeling. Journal of the Air and Waste Management Association, 2015, 65, 1194-1205.	0.9	6
227	Regional Ozone Impacts of Increased Natural Gas Use in the Texas Power Sector and Development in the Eagle Ford Shale. Environmental Science & amp; Technology, 2015, 49, 3966-3973.	4.6	43
228	Atmospheric Emissions and Air Quality Impacts from Natural Gas Production and Use. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 55-75.	3.3	39
229	Methane emissions from natural gas production and use: reconciling bottom-up and top-down measurements. Current Opinion in Chemical Engineering, 2014, 5, 78-83.	3.8	65
230	Atmospheric Hydrocarbon Emissions and Concentrations in the Barnett Shale Natural Gas Production Region. Environmental Science & Technology, 2014, 48, 5314-5321.	4.6	40
231	Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use. ACS Sustainable Chemistry and Engineering, 2014, 2, 2028-2035.	3.2	20
232	Regional Air Quality Impacts of Increased Natural Gas Production and Use in Texas. Environmental Science & Technology, 2013, 47, 3521-3527.	4.6	50
233	Measurements of methane emissions at natural gas production sites in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17768-17773.	3.3	455
234	Industrial Flare Performance at Low Flow Conditions. 2. Steam- and Air-Assisted Flares. Industrial & Engineering Chemistry Research, 2012, 51, 12569-12576.	1.8	38

#	Article	IF	CITATIONS
235	Application of the Carbon Balance Method to Flare Emissions Characteristics. Industrial & Engineering Chemistry Research, 2012, 51, 12577-12585.	1.8	16
236	Industrial Flare Performance at Low Flow Conditions. 1. Study Overview. Industrial & Engineering Chemistry Research, 2012, 51, 12559-12568.	1.8	46
237	Direct measurement of volatile organic compound emissions from industrial flares using real-time online techniques: Proton Transfer Reaction Mass Spectrometry and Tunable Infrared Laser Differential Absorption Spectroscopy. Industrial & amp; Engineering Chemistry Research, 2012, 51, 12674-12684.	1.8	40
238	Impacts of Emission Variability and Flare Combustion Efficiency on Ozone Formation in the Houston–Galveston–Brazoria Area. Industrial & Engineering Chemistry Research, 2012, 51, 12593-12599.	1.8	9
239	Minimize Flaring through Integration with Fuel Gas Networks. Industrial & Engineering Chemistry Research, 2012, 51, 12630-12641.	1.8	21
240	Temporal Variability in Flaring Emissions in the Houston–Galveston Area. Industrial & Engineering Chemistry Research, 2012, 51, 12653-12662.	1.8	7
241	Impact of Flare Destruction Efficiency and Products of Incomplete Combustion on Ozone Formation in Houston, Texas. Industrial & amp; Engineering Chemistry Research, 2012, 51, 12663-12673.	1.8	16
242	Sustainability in chemical engineering education: Identifying a core body of knowledge. AICHE Journal, 2012, 58, 2296-2302.	1.8	18
243	Using market-based dispatching with environmental price signals to reduce emissions and water use at power plants in the Texas grid. Environmental Research Letters, 2011, 6, 044018.	2.2	16
244	Comparison of Lagrangian Process Analysis tools for Eulerian air quality models. Atmospheric Environment, 2011, 45, 5200-5211.	1.9	17
245	Preparing future engineers for challenges of the 21st century: Sustainable engineering. Journal of Cleaner Production, 2010, 18, 698-701.	4.6	75
246	Dedication of This Special Issue ofl&EC Researchto Professor Donald R. Paul. Industrial & Engineering Chemistry Research, 2010, 49, 11857-11858.	1.8	0
247	Interpollutant emission trading of ozone precursors in southeast Texas. Clean Technologies and Environmental Policy, 2009, 11, 189-200.	2.1	0
248	Estimates of the air quality benefits of using natural gas in industrial and transportation applications in Lima, Peru. Clean Technologies and Environmental Policy, 2009, 11, 409-423.	2.1	1
249	Sustainable engineering education in the United States. Sustainability Science, 2009, 4, 7-15.	2.5	58
250	Sustainability in Engineering Education and Research at U.S. Universities. Environmental Science & Technology, 2009, 43, 5558-5564.	4.6	63
251	Teaching Sustainable Engineering. Journal of Industrial Ecology, 2008, 11, 8-10.	2.8	15
252	Improvement of the Chemical Mass Balance model for apportioning—sources of non-methane hydrocarbons using composite aged source profiles. Atmospheric Environment, 2008, 42, 1319-1337.	1.9	19

#	Article	IF	CITATIONS
253	Comparisons of modeled and observed isoprene concentrations in southeast Texas. Atmospheric Environment, 2008, 42, 1922-1940.	1.9	18
254	Reductions in ozone concentrations due to controls on variability in industrial flare emissions in Houston, Texas. Atmospheric Environment, 2008, 42, 4198-4211.	1.9	24
255	Modeling ozone formation from industrial emission events in Houston, Texas. Atmospheric Environment, 2008, 42, 7641-7650.	1.9	45
256	Application of a Lagrangian Process Analysis tool to characterize ozone formation in Southeast Texas. Atmospheric Environment, 2008, 42, 5743-5759.	1.9	16
257	The Impacts of Urbanization on Emissions and Air Quality: Comparison of Four Visions of Austin, Texas. Environmental Science & Technology, 2008, 42, 7294-7300.	4.6	31
258	Transport of Atmospheric Fine Particulate Matter: Part 2—Findings from Recent Field Programs on the Intraurban Variability in Fine Particulate Matter. Journal of the Air and Waste Management Association, 2008, 58, 196-215.	0.9	27
259	Transport of Atmospheric Fine Particulate Matter: Part 1—Findings from Recent Field Programs on the Extent of Regional Transport within North America. Journal of the Air and Waste Management Association, 2008, 58, 254-264.	0.9	18
260	Fine Particulate Matter Emissions Inventories: Comparisons of Emissions Estimates with Observations from Recent Field Programs. Journal of the Air and Waste Management Association, 2008, 58, 320-343.	0.9	28
261	Supplemental Material to "Advances in Integrated and Continuous Measurements for Particle Mass and Chemical Composition". Journal of the Air and Waste Management Association, 2008, 58, .	0.2	0
262	Supplemental Material to "Source Apportionment: Findings from the U.S. Supersites Program". Journal of the Air and Waste Management Association, 2008, 58, .	0.2	0
263	Photochemical Modeling of Emissions Trading of Highly Reactive Volatile Organic Compounds in Houston, Texas. 1. Reactivity Based Trading and Potential for Ozone Hot Spot Formation. Environmental Science & Technology, 2007, 41, 2095-2102.	4.6	13
264	Photochemical Modeling of Emissions Trading of Highly Reactive Volatile Organic Compounds in Houston, Texas. 2. Incorporation of Chlorine Emissions. Environmental Science & Technology, 2007, 41, 2103-2107.	4.6	7
265	Sustainable engineering: From myth to mechanism. Environmental Quality Management, 2007, 17, 17-26.	1.0	19
266	The effect of variability in industrial emissions on ozone formation in Houston, Texas. Atmospheric Environment, 2007, 41, 9580-9593.	1.9	42
267	Sustainable engineering: a model for engineering education in the twenty-first century?. Clean Technologies and Environmental Policy, 2006, 8, 70-71.	2.1	15
268	Modeling of surface reactions on carbonaceous atmospheric particles during a wood smoke episode in Houston, Texas. Atmospheric Environment, 2006, 40, 524-537.	1.9	8
269	Chlorine chemistry in urban atmospheres: Aerosol formation associated with anthropogenic chlorine emissions in southeast Texas. Atmospheric Environment, 2006, 40, 512-523.	1.9	22
270	Modeling the impacts of emission events on ozone formation in Houston, Texas. Atmospheric Environment, 2006, 40, 5329-5341.	1.9	52

#	Article	IF	CITATIONS
271	An Overview of the Gulf Coast Aerosol Research and Characterization Study: The Houston Fine Particulate Matter Supersite. Journal of the Air and Waste Management Association, 2006, 56, 456-466.	0.9	8
272	Hydrocarbon emissions from industrial release events in the Houston-Galveston area and their impact on ozone formation. Atmospheric Environment, 2005, 39, 3785-3798.	1.9	97
273	An Industrial Ecology: Material Flows and Engineering Design. , 2005, , 283-300.		2
274	Trace Gases and Particulate Matter Emissions from Wildfires and Agricultural Burning in Northeastern Mexico during the 2000 Fire Season. Journal of the Air and Waste Management Association, 2005, 55, 1797-1808.	0.9	14
275	Predicting secondary organic aerosol formation rates in southeast Texas. Journal of Geophysical Research, 2005, 110, .	3.3	34
276	Daily, Seasonal, and Spatial Trends in PM2.5Mass and Composition in Southeast Texas Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 14-26.	1.5	76
277	Analysis of motor vehicle emissions in a Houston tunnel during the Texas Air Quality Study 2000. Atmospheric Environment, 2004, 38, 3363-3372.	1.9	116
278	Seasonal and spatial trends in primary and secondary organic carbon concentrations in southeast Texas. Atmospheric Environment, 2004, 38, 3225-3239.	1.9	42
279	Sesquiterpene Emissions and Secondary Organic Aerosol Formation Potentials for Southeast Texas Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 167-181.	1.5	26
280	Estimates of Anthropogenic Secondary Organic Aerosol Formation in Houston, Texas Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 156-166.	1.5	38
281	Size Distributions of Organic Functional Groups in Ambient Aerosol Collected in Houston, Texas Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 82-91.	1.5	25
282	US EPA/academia collaboration for a green engineering textbook for chemical engineering. Clean Technologies and Environmental Policy, 2003, 5, 226-231.	2.1	0
283	Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas. Atmospheric Environment, 2003, 37, 1393-1400.	1.9	134
284	Development of a chlorine mechanism for use in the carbon bond IV chemistry model. Journal of Geophysical Research, 2003, 108, .	3.3	45
285	An environmental chamber investigation of chlorine-enhanced ozone formation in Houston, Texas. Journal of Geophysical Research, 2003, 108, .	3.3	12
286	C–C bond fission pathways of chloroalkenyl alkoxy radicals. Journal of Chemical Physics, 2003, 118, 1794-1801.	1.2	10
287	Fine particulate matter source attribution for Southeast Texas using14C/13C ratios. Journal of Geophysical Research, 2002, 107, ACH 3-1.	3.3	60
288	Air pollutant emissions associated with forest, grassland, and agricultural burning in Texas. Atmospheric Environment, 2002, 36, 3779-3792.	1.9	109

#	Article	IF	CITATIONS
289	Effects of temperature and land use on predictions of biogenic emissions in Eastern Texas, USA. Atmospheric Environment, 2002, 36, 3321-3337.	1.9	18
290	Sensitivity of urban ozone formation to chlorine emission estimates. Atmospheric Environment, 2002, 36, 4991-5003.	1.9	60
291	Green engineering: Environmentally conscious design of chemical processes and products. AICHE Journal, 2001, 47, 1906-1910.	1.8	59
292	Measurement and analysis of atmospheric concentrations of isoprene and its reaction products in central Texas. Atmospheric Environment, 2001, 35, 1001-1013.	1.9	75
293	A land use database and examples of biogenic isoprene emission estimates for the state of Texas, USA. Atmospheric Environment, 2001, 35, 6465-6477.	1.9	41
294	Biogenic hydrocarbon emission estimates for North Central Texas. Atmospheric Environment, 2000, 34, 3419-3435.	1.9	22
295	Anthropogenic Sources of Chlorine and Ozone Formation in Urban Atmospheres. Environmental Science & Technology, 2000, 34, 4470-4473.	4.6	90
296	Catalytic hydrodechlorination of 1,3-dichloropropene. Chemical Engineering Science, 1999, 54, 3627-3634.	1.9	12
297	Industrial ecology. Environmental Progress, 1999, 18, A3-A3.	0.8	0
298	Ranking pollutants. P2 Pollution Prevention Review, 1997, 7, 89-98.	0.0	0
299	FTIR Analysis of Aerosol Formed in the Photooxidation of 1,3,5-Trimethylbenzene. Aerosol Science and Technology, 1997, 26, 516-526.	1.5	34
300	Catalytic Hydroprocessing of Chlorinated Olefins. Industrial & Engineering Chemistry Research, 1997, 36, 3019-3026.	1.8	51
301	Minimizing Chlorine Use: Assessing the Trade-offs Between Cost and Chlorine Reduction in Chemical Manufacturing. Journal of Industrial Ecology, 1997, 1, 111-134.	2.8	12
302	Measuring Corporate Environmental Performance: The ICI Environmental Burden System. Journal of Industrial Ecology, 1997, 1, 117-127.	2.8	76
303	Systematic design of substitute materials: A solvent case study. P2 Pollution Prevention Review, 1997, 7, 113-118.	0.0	0
304	Measuring corporate environmental performance: The Imperial Chemical Industries Group environmental burden system. P2 Pollution Prevention Review, 1997, 7, 109-114.	0.0	0
305	Global Recognition for Green and Sustainable Chemistry and Engineering. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	1