List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/787820/publications.pdf Version: 2024-02-01

LUNUE YANG

#	Article	IF	CITATIONS
1	Subcritical crack growth models for static fatigue of Hiâ€Nicalon TM â€S SiC fiber in air and steam. Journal of the American Ceramic Society, 2021, 104, 3562-3592.	3.8	7
2	Fully-reversed tension-compression fatigue of 2D and 3D woven polymer matrix composites at elevated temperature. Polymer Testing, 2021, 97, 107179.	4.8	10
3	Creep in interlaminar shear of an Hi-Nicalon™/SiC–B4C composite at 1300℃ in air and in steam. Journal of Composite Materials, 2020, 54, 1819-1829.	2.4	5
4	Static fatigue of Hiâ€Nicalonâ"¢â€5 fiber at elevated temperature in air, steam, and silicic acidâ€saturated steam. Journal of the American Ceramic Society, 2020, 103, 1358-1371.	3.8	10
5	Investigation of long-term thermal aging-induced damage in oxide/oxide ceramic matrix composites. Journal of the European Ceramic Society, 2020, 40, 1549-1556.	5.7	18
6	Fatigue of a SiC/SiC ceramic composite with an ytterbiumâ€disilicate environmental barrier coating at elevated temperature*. International Journal of Applied Ceramic Technology, 2020, 17, 2074-2082.	2.1	9
7	Creep of a Nextelâ,,¢720/alumina ceramic composite containing an array of small holes at 1200°C in air and in steam. International Journal of Applied Ceramic Technology, 2019, 16, 3-13.	2.1	4
8	Fatigue of three advanced SiC/SiC ceramic matrix composites at 1200°C in air and in steam. International Journal of Applied Ceramic Technology, 2018, 15, 3-15.	2.1	47
9	Fatigue of Advanced SiC/SiC Ceramic Matrix Composites at Elevated Temperature in Air and in Steam. , 2018, , .		0
10	Fatigue of unitized polymer/ceramic matrix composites with 2D and 3D fiber architecture at elevated temperature. Polymer Testing, 2018, 72, 244-256.	4.8	9
11	5.7 Mechanical Behavior of Oxide–Oxide Fiber-Reinforced CMCs at Elevated Temperature: Environmental Effects. , 2018, , 174-236.		1
12	Fatigue of 2D and 3D Carbon-Fiber-Reinforced Polymer Matrix Composites and of a Unitized Polymer/Ceramic Matrix Composite at Elevated Temperature. , 2017, , 873-907.		0
13	Testing Advanced SiC Fiber Tows at Elevated Temperature in Silicic Acid-Saturated Steam. , 2017, , .		0
14	Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature. Applied Composite Materials, 2017, 24, 1405-1424.	2.5	13
15	Creep in Interlaminar Shear of an Oxide/Oxide Ceramic-Matrix Composite at Elevated Temperature1. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	1.1	4
16	Mechanical Properties and Fatigue Behavior of 2D Woven PMC and Unitized Composite Airframe Structures at Elevated Temperature. , 2016, , .		0
17	Fatigue behavior of an advanced SiC/SiC ceramic composite with a self-healing matrix at 1300°C in air and in steam. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 438-445.	5.6	59
18	Fatigue of a 2D unitized polymer/ceramic matrix composite at elevated temperature. Polymer Testing, 2016, 54, 203-213.	4.8	4

#	Article	IF	CITATIONS
19	Tension-compression fatigue of an oxide/oxide ceramic composite at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 659, 270-277.	5.6	38
20	Tension-Compression Fatigue of a Nextelâ,,¢720/alumina Composite at 1200°C in Air and in Steam. Applied Composite Materials, 2016, 23, 707-717.	2.5	11
21	Mechanical Properties and Fatigue Behavior of 2D and 3D Woven PMC Airframe Structures at Elevated Temperature. , 2015, , .		0
22	Creep in Interlaminar Shear of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature. , 2015, , .		0
23	Effects of environment on creep behavior of three oxide–oxide ceramic matrix composites atÂ1200°C. , 2015, , 315-340.		0
24	Creep behavior in interlaminar shear of a Hi-NicalonTM/ SiC-B4C composite at 1200â ^{~-} C in air and in steam. MATEC Web of Conferences, 2015, 29, 00006.	0.2	0
25	Creep in Interlaminar Shear of a Nextel ^{â,,¢} 720/aluminosilicate Composite at 1100°C in Air and in Steam. International Journal of Applied Ceramic Technology, 2015, 12, 473-480.	2.1	7
26	Thermo-chemical compatibility of hafnium diboride with yttrium aluminum garnet at 1500°C in air. Journal of the European Ceramic Society, 2015, 35, 2437-2444.	5.7	3
27	Creep in Interlaminar Shear of a SiC/SiC Ceramic Matrix Composite at Elevated Temperature. , 2014, , .		0
28	Computational Viscoplasticity Based on Overstress (CVBO) Model. International Journal for Computational Methods in Engineering Science and Mechanics, 2014, 15, 142-157.	2.1	0
29	Creep Behavior in Interlaminar Shear of a SiC/SiC Ceramic Composite with a Self-healing Matrix. Applied Composite Materials, 2014, 21, 213-225.	2.5	13
30	Creep mechanisms and microstructure evolution of Nextelâ,,¢ 610 fiber in air and steam. Journal of the European Ceramic Society, 2014, 34, 2413-2426.	5.7	28
31	Creep of polycrystalline yttrium aluminum garnet (YAG) at elevated temperature in air and in steam. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 589, 125-131.	5.6	14
32	Creep behavior in interlaminar shear of a Hi-Nicalonâ,,¢/SiC–B4C composite at 1200 °C in air and in steam. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 279-289.	5.6	14
33	Creep of Nextel ^{â,,¢} 610 Fiber at 1100°C in Air and in Steam. International Journal of Applied Ceramic Technology, 2013, 10, 276-284.	2.1	32
34	Creep and microstructure of Nextelâ,,¢ 720 fiber at elevated temperature in air and in steam. Acta Materialia, 2013, 61, 6114-6124.	7.9	55
35	Tension–compression fatigue of a SiC/SiC ceramic matrix composite at 1200°C in air and in steam. International Journal of Fatigue, 2013, 47, 154-160.	5.7	55
36	Notch Sensitivity of Fatigue Behavior of a Hi-Nicalonâ,,¢/SiC-B4C Composite at 1,200°C in Air and in Steam. Applied Composite Materials, 2013, 20, 891-905.	2.5	25

#	Article	IF	CITATIONS
37	Tension-Compression Fatigue of a SiC/SiC Ceramic Matrix Composite at Elevated Temperature. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	1.1	3
38	The Rate (Time)-Dependent Mechanical Behavior of the PMR-15 Thermoset Polymer at Temperatures in the 274–316 °C Range: Experiments and Modeling. Journal of Pressure Vessel Technology, Transactions of the ASME, 2012, 134, .	0.6	3
39	Tension–Compression Fatigue of a SiC/SiC Ceramic Matrix Composite at Elevated Temperature. , 2012, , .		1
40	Fatigue behavior of a Hi-Nicalonâ,,¢/SiC–B4C composite at 1200°C in air and in steam. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 119-128.	5.6	57
41	Effects of Steam Environment on Fatigue Behavior of Two SiC/[SiC+Si3N4] Ceramic Composites at 1300°C. Applied Composite Materials, 2011, 18, 385-396.	2.5	30
42	Cyclic creep and recovery behavior of Nextelâ,,¢720/alumina ceramic composite at 1200°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1848-1856.	5.6	10
43	Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200°C. Composites Science and Technology, 2011, 71, 190-196.	7.8	106
44	The Rate (Time)–Dependent Mechanical Behavior of the PMR-15 Thermoset Polymer at Temperatures in the 274–316 °C Range: Experiments and Modeling. , 2011, , .		0
45	The Rate (Time)-Dependent Mechanical Behavior of the PMR-15 Thermoset Polymer at 316°C: Experiments and Modeling. Journal of Pressure Vessel Technology, Transactions of the ASME, 2010, 132, .	0.6	2
46	Creep behavior of Nextelâ,"¢720/alumina–mullite ceramic composite with ±45° fiber orientation at 1200°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5326-5334.	5.6	23
47	Effects of steam environment on creep behavior of Nextel™720/alumina–mullite ceramic composite at elevated temperature. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1807-1816.	7.6	25
48	Strain Rate Dependence and Short-Term Relaxation Behavior of a Thermoset Polymer at Elevated Temperature: Experiment and Modeling. Journal of Pressure Vessel Technology, Transactions of the ASME, 2009, 131, .	0.6	20
49	Effects of prior aging at 288°C in air and in argon environments on creep response of PMR-15 neat resin. Journal of Applied Polymer Science, 2009, 111, 228-236.	2.6	14
50	Effects of prior aging at 288°C in argon environment on timeâ€dependent deformation behavior of a thermoset polymer at elevated temperature, part 1: Experiments. Journal of Applied Polymer Science, 2009, 114, 2956-2962.	2.6	1
51	Effects of prior aging at 288°C in argon environment on timeâ€dependent deformation behavior of a thermoset polymer at elevated temperature, Part 2: Modeling with viscoplasticity theory based on overstress. Journal of Applied Polymer Science, 2009, 114, 3389-3395.	2.6	1
52	Effects of Steam Environment on Creep Behavior of Nextelâ,,¢610/Monazite/Alumina Composite at 1,100°C. Applied Composite Materials, 2009, 16, 379-392.	2.5	24
53	Creep of Nextelâ"¢720/alumina–mullite ceramic composite at 1200°C in air, argon, and steamâ~†. Composites Science and Technology, 2009, 69, 663-669.	7.8	32
54	Rate Dependence and Short-Term Creep Behavior of a Thermoset Polymer at Elevated Temperature. Journal of Pressure Vessel Technology, Transactions of the ASME, 2009, 131, .	0.6	15

#	Article	IF	CITATIONS
55	Effects of Environment on Creep Behavior of NextelTM 720/Alumina-Mullite Ceramic Composite at 1200°C. Ceramic Transactions, 2009, , 193-203.	0.1	0
56	Creep behavior of Nextelâ,,¢720/alumina ceramic composite with ±45° fiber orientation at 1200°C. Composites Science and Technology, 2008, 68, 1588-1595.	7.8	32
57	Creep behavior in interlaminar shear of Nextelâ,,¢720/alumina ceramic composite at elevated temperature in air and in steamâ~†. Composites Science and Technology, 2008, 68, 2260-2266.	7.8	28
58	Effects of environment on creep behavior of two oxide/oxide ceramic–matrix composites at 1200°C. Journal of Materials Science, 2008, 43, 6734-6746.	3.7	37
59	Some aspects of the mechanical response of BMI 5250â€4 neat resin at 191°C: Experiment and modeling. Journal of Applied Polymer Science, 2008, 107, 1378-1386.	2.6	8
60	The rate (time)-dependent mechanical behavior of the PMR-15 thermoset polymer at elevated temperature. Polymer Testing, 2008, 27, 908-914.	4.8	19
61	Effect of loading rate on the monotonic tensile behavior and tensile strength of an oxide–oxide ceramic composite at 1200°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 492, 88-94.	5.6	15
62	Effects of frequency and environment on fatigue behavior of an oxide–oxide ceramic composite at 1200°C. International Journal of Fatigue, 2008, 30, 502-516.	5.7	34
63	Effects of steam environment on creep behavior of Nextelâ,,¢720/alumina ceramic composite at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497, 101-110.	5.6	37
64	Effects of steam environment on compressive creep behavior of Nextelâ,,¢720/Alumina ceramic composite at 1200°C. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1829-1837.	7.6	21
65	Strain Rate Dependence and Short-Term Relaxation Behavior of a Thermoset Polymer at Elevated Temperature: Experiment and Modeling. , 2008, , .		0
66	Influence of hold times on the elevated-temperature fatigue behavior of an oxide–oxide ceramic composite in air and in steam environmentâ~†. Composites Science and Technology, 2007, 67, 1425-1438.	7.8	46
67	Compressive creep behavior of an oxide–oxide ceramic composite with monazite fiber coating at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 590-601.	5.6	21
68	Creep behavior of NextelTM610/Monazite/Alumina composite at elevated temperatures. Composites Science and Technology, 2006, 66, 2089-2099.	7.8	33
69	Effects of steam environment on high-temperature mechanical behavior of NextelTM720/alumina (N720/A) continuous fiber ceramic composite. Composites Part A: Applied Science and Manufacturing, 2006, 37, 2029-2040.	7.6	55
70	Introduction to carbon nanotube and nanofiber smart materials. Composites Part B: Engineering, 2006, 37, 382-394.	12.0	348
71	Creep Behavior of Nextelâ,,¢ 610/Monazite/Alumina Composite at Elevated Temperatures. , 2005, ,		0
72	Low-energy impact effects on candidate automotive structural composites. Composites Science and Technology, 2003, 63, 755-769.	7.8	21

#	Article	IF	CITATIONS
73	Short-term static and cyclic behavior of two automotive carbon-fiber composites. Composites Part A: Applied Science and Manufacturing, 2003, 34, 731-741.	7.6	9
74	Creep of Polymer Matrix Composites. II: Monkman-Grant Failure Relationship for Transverse Isotropy. Journal of Engineering Mechanics - ASCE, 2003, 129, 318-323.	2.9	8
75	Creep of Polymer Matrix Composites. I: Norton/Bailey Creep Law for Transverse Isotropy. Journal of Engineering Mechanics - ASCE, 2003, 129, 310-317.	2.9	18
76	Durability-based design criteria for a chopped-glass-fiber automotive structural composite. Composites Science and Technology, 2001, 61, 1083-1095.	7.8	35
77	Experimental investigation of uniaxial and biaxial rate-dependent behavior of a discontinuous metal-matrix composite at 538 ŰC. Composites Science and Technology, 1997, 57, 307-318.	7.8	4
78	The rate-dependent mechanical behavior of modified 9wt.%Cr-1wt.%Mo steel at 538 °C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 186, 15-21.	5.6	13
79	Flaw Assessment Procedure for High-Temperature Reactor Components. Journal of Pressure Vessel Technology, Transactions of the ASME, 1992, 114, 166-170.	0.6	22
80	Rate Sensitivity and Short-Term Relaxation Behavior of AISI Type 304 Stainless Steel at Room Temperature and at 650°C; Influence of Prior Aging. Journal of Pressure Vessel Technology, Transactions of the ASME, 1991, 113, 385-391.	0.6	9
81	The interaction of cyclic hardening and ratchetting for AISI type 304 stainless steel at room temperature—I. Experiments. Journal of the Mechanics and Physics of Solids, 1990, 38, 575-585.	4.8	56
82	The interaction of cyclic hardening and ratchetting for AISI type 304 stainless steel at room temperature—II. Modeling with the viscoplasticity theory based on overstress. Journal of the Mechanics and Physics of Solids, 1990, 38, 587-597.	4.8	20
83	The Influence of Test Temperature on the Ratchetting Behavior of Type 304 Stainless Steel. Journal of Engineering Materials and Technology, Transactions of the ASME, 1989, 111, 378-383.	1.4	65
84	Elastic-Plastic Analyses of Surface Flaws in a Reactor Vessel. Journal of Pressure Vessel Technology, Transactions of the ASME, 1984, 106, 247-254.	0.6	9
85	Elastic-plastic analysis of small defects—voids and inclusions. Engineering Fracture Mechanics, 1984, 20, 1-10.	4.3	24
86	Effects of Temperature and Steam Environment on Creep Behavior of an Oxide-Oxide Ceramic Composite. Ceramic Engineering and Science Proceedings, 0, , 151-166.	0.1	0
87	To drill or not to drill? Creep of an oxideâ€oxide composite with diamondâ€drilled effusion holes at elevated temperature. International Journal of Applied Ceramic Technology, 0, , .	2.1	1