Changzheng Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7877272/publications.pdf

Version: 2024-02-01

279798 206112 2,455 76 23 48 citations h-index g-index papers 81 81 81 1834 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic Behavior of Polar Nanoregions in Reâ€Entrant Relaxor 0.6Bi(Mg _{1/2} Ti _{1/2})O ₃ –0.4PbTiO ₃ . Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	8
2	Structure and energy storage performance of lanthanide elements doped AgNbO3 lead-free antiferroelectric ceramics. Journal of the European Ceramic Society, 2022, 42, 2204-2211.	5.7	23
3	Phase engineering in NaNbO3 antiferroelectrics for high energy storage density. Journal of Materiomics, 2022, 8, 753-762.	5.7	34
4	Structure and relaxor ferroelectric behavior of the novel tungsten bronze type ceramic Sr5BiTi3Nb7O30. Journal of Applied Physics, 2022, 131, .	2.5	4
5	Ferroelectricity and Schottky Heterojunction Engineering in AgNbO ₃ : A Simultaneous Way of Boosting Piezo-photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22313-22323.	8.0	21
6	Silver stoichiometry engineering: an alternative way to improve energy storage density of AgNbO3-based antiferroelectric ceramics. Journal of Materials Research, 2021, 36, 1067-1075.	2.6	13
7	Strong tribocatalytic dye degradation by tungsten bronze Ba4Nd2Fe2Nb8O30. Ceramics International, 2021, 47, 5038-5043.	4.8	31
8	Enhancement of dielectric response by the interaction of point defect and grain boundary in copper tantalate oxides. Ceramics International, 2021, 47, 16178-16185.	4.8	8
9	Preparation and dielectric properties of co-contained unfilled tungsten bronze ceramics Ba4RCo0.5Nb9.5O30. Journal of Materials Science: Materials in Electronics, 2021, 32, 24939-24952.	2.2	5
10	Tribocatalytic degradation of dyes by tungsten bronze ferroelectric Ba _{2.5} Sr _{2.5} Nb ₈ Ta ₂ O ₃₀ submicron particles. RSC Advances, 2021, 11, 13386-13395.	3.6	25
11	Effect of strontium substitution on the structure and dielectric properties of unfilled tungsten bronze Ba4-xSrxSmFe0.5Nb9.5O30 ceramics. Ceramics International, 2020, 46, 9240-9248.	4.8	18
12	High-Temperature Dielectric and Relaxation Behavior of Tantalum-Doped Sodium Bismuth Titanate-Barium Titanate Ceramics. Journal of Electronic Materials, 2020, 49, 6643-6655.	2.2	16
13	Simultaneously optimizing both energy storage density and efficiency in a novel lead-free relaxor antiferroelectrics. Journal of the European Ceramic Society, 2020, 40, 3562-3568.	5.7	56
14	Effect of Lu doping on the structure, electrical properties and energy storage performance of AgNbO3 antiferroelectric ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 7731-7741.	2.2	18
15	Realizing high low-electric-field energy storage performance in AgNbO3 ceramics by introducing relaxor behaviour. Journal of Materiomics, 2019, 5, 597-605.	5.7	80
16	Effect of rare earth on dielectric properties of Mn contained unfilled tungsten bronze ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 17393-17404.	2.2	4
17	Ultrahigh energy-storage density in A-/B-site co-doped AgNbO ₃ lead-free antiferroelectric ceramics: insight into the origin of antiferroelectricity. Journal of Materials Chemistry A, 2019, 7, 26293-26301.	10.3	136
18	Aliovalent A-site engineered AgNbO ₃ lead-free antiferroelectric ceramics toward superior energy storage density. Journal of Materials Chemistry A, 2019, 7, 14118-14128.	10.3	242

#	Article	IF	Citations
19	Preparation and dielectric properties of Ba4â^'xSm2Fe2â^'xNb8+xO30 tungsten bronze ceramics with an adjustable structure that changes from filled to unfilled. Materials Research Bulletin, 2019, 114, 18-27.	5.2	2
20	Preparation and dielectric properties of Ba4RFe0.5Nb9.5O30 (RÂ= La, Nd, Eu, Gd) unfilled tungsten bronze ceramics. Journal of Alloys and Compounds, 2019, 773, 470-481.	5.5	15
21	Leadâ€free Ag _{1â~3<i>x</i>} La _{<i>x</i>} NbO ₃ antiferroelectric ceramics with highâ€energy storage density and efficiency. Journal of the American Ceramic Society, 2019, 102, 4640-4647.	3.8	108
22	Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics. Ceramics International, 2019, 45, 5559-5565.	4.8	90
23	Effect of annealing atmosphere on the structure and dielectric properties of unfilled tungsten bronze ceramics Ba4PrFe0.5Nb9.5O30. Ceramics International, 2018, 44, 7700-7708.	4.8	12
24	High-temperature dielectric relaxation mechanism in Ba4SmFe0.5Nb9.5O30 tungsten bronze ceramics. Ceramics International, 2018, 44, S224-S227.	4.8	2
25	Temperatureâ€stable unfilled tungsten bronze dielectric ceramics: Ba _{3.5} Sm _{1.5} Fe _{0.75} Nb _{9.25} O ₃₀ . International Journal of Applied Ceramic Technology, 2017, 14, 269-273.	2.1	6
26	Dielectric properties of unfilled tetragonal tungsten bronze Ba4PrFe0.5Nb9.5O30 ceramics. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 904-909.	1.0	6
27	Relaxor behavior and ferroelectric properties of a new Ba 4 SmFe 0.5 Nb 9.5 O 30 tungsten bronze ceramic. Ceramics International, 2016, 42, 14999-15004.	4.8	11
28	Dielectric and ferroelectric properties of unfilled tungsten bronze KBa3RNb10O30 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 515-520.	2.2	8
29	Structure and Electrical Properties of LiF Doped 0.996(0.95K _{0.5} Na _{0.5} NbO ₃ -0.05LiSbO ₃)-0.004BiFeO _{Ceramics. Ferroelectrics, 2014, 467, 99-109.}	3< ¢sø b>Pi	ez 6 electric
30	Factors influencing high voltage performance of coconut char derived carbon based electrical double layer capacitor made using acetonitrile and propylene carbonate based electrolytes. Journal of Power Sources, 2014, 272, 90-99.	7.8	18
31	Facile synthesis and enhanced visible-light photocatalytic activity of Ag2S nanocrystal-sensitized Ag8W4O16 nanorods. Journal of Colloid and Interface Science, 2014, 422, 30-37.	9.4	35
32	Influences of oxide chemical modified on microstructure and electrical properties of PbTiO3-Bi(Ni1/2Ti1/2)O3. Inorganic Chemistry Communication, 2013, 27, 9-12.	3.9	5
33	Polaron relaxation and non-ohmic behavior in CaCu3Ti4O12 ceramics with different cooling methods. Materials Chemistry and Physics, 2013, 139, 844-850.	4.0	74
34	Multiferroic properties and enhanced magnetoelectric coupling in (1Ââ^'Âx)PbTiO3Ââ^'ÂxNdFeO3. Solid State Sciences, 2013, 15, 91-94.	3.2	18
35	Preparation and dielectric properties of unfilled tungsten bronze ferroelectrics Ba4RETiNb9O30. Journal of Alloys and Compounds, 2013, 581, 547-552.	5. 5	23
36	Na0.5K0.5NbO3 and 0.9Na0.5K0.5NbO3–0.1Bi0.5Na0.5TiO3 nanocrystalline powders synthesized by low-temperature solid-state reaction. Advanced Powder Technology, 2013, 24, 908-912.	4.1	17

#	Article	IF	Citations
37	Giant dielectric permittivity and non-linear electrical behavior in CaCu 3 Ti 4 O 12 varistors from the molten-salt synthesized powder. Ceramics International, 2013, 39, 6063-6068.	4.8	57
38	Structure and enhanced piezoelectric response by chemical doping in PbTiO3–PbZrO3–Bi(Ni1/2Ti1/2)O3. Inorganic Chemistry Communication, 2013, 31, 66-68.	3.9	9
39	Quantitative Description of the Diffuse Phase Transition of BNT-NKN Ceramics. Ferroelectrics, 2012, 432, 65-72.	0.6	16
40	Structure and piezoelectric properties of (1Ââ^'Â0.5x)BaTiO ₃ â€"0.5x (0.4BaZrO ₃ â€"0.6CaTiO ₃) ceramics. Journal Physics D: Applied Physics, 2012, 45, 295403.	2.8	21
41	Self-assembly growth of flower-like BiFeO3 powders at low temperature. Journal of Materials Science: Materials in Electronics, 2012, 23, 1500-1503.	2.2	12
42	Preparation and Electrical Properties of High-TC Piezoelectric Ceramics of Strontium-Substituted Bi(Ni1/2Ti1/2)O3-PbTiO3. Journal of the American Ceramic Society, 2012, 95, 1170-1173.	3.8	18
43	Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light. Catalysis Communications, 2012, 17, 200-204.	3.3	174
44	One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4. Applied Catalysis B: Environmental, 2012, 115-116, 245-252.	20.2	218
45	Giant dielectric response and charge compensation of Li- and Co-doped NiO ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 673-677.	3.5	73
46	Oxygen-vacancy-related high-temperature dielectric relaxation and electrical conduction in 0.95K0.5Na0.5NbO3–0.05BaZrO3 ceramic. Physica B: Condensed Matter, 2012, 407, 136-139.	2.7	72
47	Dielectric and non-Ohmic properties of CaCu3Ti4O12 ceramics modified with NiO, SnO2, SiO2, and Al2O3 additives. Journal of Materials Science, 2012, 47, 2294-2299.	3.7	53
48	Frequency and temperature dependent dielectric and conductivity behavior of 0.95(K0.5Na0.5)NbO3–0.05BaTiO3 ceramic. Materials Chemistry and Physics, 2011, 126, 769-772.	4.0	81
49	Temperature-stable and low loss Fe-containing dielectrics in BaO-Ln2O3-Fe2O3-Ta2O5 system. Journal of Materials Science: Materials in Electronics, 2011, 22, 1208-1212.	2.2	2
50	Space-charge relaxation and electrical conduction inÂKO.5NaO.5NbO3 at high temperatures. Applied Physics A: Materials Science and Processing, 2011, 104, 1047-1051.	2.3	119
51	Preparation, structure and dielectric properties of tungsten bronze ferroelectrics in SrO-Eu2O3-TiO2-Nb2O5 system. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 311-314.	1.0	1
52	Dielectric and nonlinear current–voltage characteristics of rare–earth doped CaCu3Ti4O12 ceramics. Journal of Applied Physics, 2011, 110, .	2.5	84
53	Two novel A4B3O12-type microwave ceramics with high-Q and near-zero τf. Journal of Materials Research, 2010, 25, 1239-1242.	2.6	7
54	Preparation, characterization and dielectric properties of Sr5RTi3Ta7O30 (R=Pr and Eu) ferroelectric ceramics. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 291-294.	1.0	0

#	Article	IF	Citations
55	A new microwave dielectric ceramic for LTCC applications. Journal of Materials Science: Materials in Electronics, 2010, 21, 849-853.	2.2	7
56	Microwave dielectric properties of Ba5Nb4O15 ceramic by molten salt method. Journal of Materials Science: Materials in Electronics, 2010, 21, 939-942.	2.2	8
57	Dielectric and ferroelectric properties of tungsten bronze ferroelectrics in SrO–Pr2O3–TiO2–Nb2O5 system. Materials Chemistry and Physics, 2010, 121, 114-117.	4.0	9
58	Ba ₄ Ln ₂ Fe ₂ Ta ₈ O ₃₀ (Ln=Pr, Eu): Temperatureâ€stable Low Loss Dielectrics with a Tungsten Bronze Structure. Journal of the American Ceramic Society, 2010, 93, 945-947.	3.8	12
59	Ba ₄ LiNb _{3â^'<i>x</i>} Ta _{<i>x</i>} O ₁₂ (<i>x</i> =0â€"3): A Series of Highâ€Q Microwave Dielectrics from the Twinned 8H Hexagonal Perovskites. Journal of the American Ceramic Society, 2010, 93, 1229-1231.	3.8	34
60	Preparation and Characterization of a New Microwave Dielectric Ceramic Ba ₄ ZnTi ₁₁ O ₂₇ . Journal of the American Ceramic Society, 2010, 93, 1537-1539.	3.8	22
61	Sr _{4â^'<i>m</i>} La <i>_m</i> Ti _{<i>m</i>?i>1} Ta _{4â^'<i>m</i>} O _{O₁₂‶ype Microwave Ceramics with a High <i>Q</i> and Low Ï, _f. Journal of the American Ceramic Society, 2010, 93, 1884-1887.}	3.8	ub> 8
62	Dielectric Properties of Ba ₄ 5m ₂ Fe ₂ 6M ₈ 60 ₃₀ 60 <m=8m>8m_{7m_{8m<}}}</m=8m>	3.8	11
63	Ba ₄ Ln ₂ Fe ₂ Nb ₈ O ₃₀ (Ln = Eu, Gd) Ferroelectric Ceramics. Ferroelectrics, 2010, 404, 33-38.	0.6	6
64	Characterization and dielectric properties of Sr4M2Ti4Ta6O30 (M=Pr and Eu) ceramics. Journal of Alloys and Compounds, 2010, 500, L9-L11.	5.5	6
65	Dielectric properties of (NaBi($1\hat{a}^2$ x)Kx)0.5Ti($1\hat{a}^2$ x)NbxO3 ceramics fabricated by mechanical alloying. Journal of Alloys and Compounds, 2010, 507, 196-200.	5.5	26
66	Effects of Sr substitution on microwave dielectric properties of Ba3LaNb3O12 ceramics. Journal of Alloys and Compounds, 2009, 487, 504-506.	5.5	13
67	A New Low Loss and Temperature Stable Microwave Dielectric Ceramic Sr ₄ La ₂ Ti ₃ Nb ₂ O ₁₈ . Ferroelectrics, 2009, 387, 118-122.	0.6	0
68	Ba3La2Ti2Ta2O15: A new microwave dielectric of A5B4O15-type cation-deficient perovskites. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 422-424.	1.0	0
69	Preparation and microwave dielectric properties of a new A5B4O15-type cation-deficient perovskites: Ba4LaTiTaO15. Materials Letters, 2008, 62, 670-672.	2.6	8
70	High permittivity and low loss dielectric ceramics Ba5LnNiNb9O30 (Ln=La, Nd and Sm). Journal of Alloys and Compounds, 2007, 429, 280-284.	5.5	16
71	Microwave Dielectric Properties of a New A5B4O15-Type Cation-Deficient Perovskite Ba2La3Ti3TaO15. Journal of the American Ceramic Society, 2007, 90, 1626-1628.	3.8	18
72	Microwave dielectric properties of Ba3La2Ti2Nb2â^'xTaxO15 ceramics. Materials Letters, 2007, 61, 3093-3095.	2.6	8

#	Article	IF	CITATIONS
73	High dielectric constant and low-loss dielectric ceramics of Ba5LnZnNb9O30 (Ln=La, Nd and Sm). Materials Letters, 2007, 61, 4140-4143.	2.6	20
74	Characterization and properties of new dielectric ceramics Ba5LnZnNb9O3O(Ln=La, Nd and Sm). Transactions of Nonferrous Metals Society of China, 2006, 16, s534-s537.	4.2	1
75	Structural and dielectric properties of Ba5 R NiNb9O30 (R=La, Nd and Sm) ceramics. Journal Wuhan University of Technology, Materials Science Edition, 2006, 21, 109-112.	1.0	O
76	TiO ₂ Added Zn-Bi Based Varistors: Microstructure, I-V, Flow and Aging Characteristics. Key Engineering Materials, 0, 633, 303-307.	0.4	0