
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7877172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Platelet Activation and Chemokine Release Are Related to Local Neutrophil-Dominant Inflammation During Hyperacute Human Stroke. Translational Stroke Research, 2022, 13, 364-369.	2.3	19
2	Thymosin β4 is essential for thrombus formation by controlling the G-actin/F-actin equilibrium in platelets. Haematologica, 2022, 107, 2846-2858.	1.7	9
3	CRLF3 plays a key role in the final stage of platelet genesis and is a potential therapeutic target for thrombocythemia. Blood, 2022, 139, 2227-2239.	0.6	8
4	Mapping densely packed αIIbβ3 receptors in murine blood platelets with expansion microscopy. Platelets, 2022, 33, 849-858.	1.1	3
5	G6b-B regulates an essential step in megakaryocyte maturation. Blood Advances, 2022, 6, 3155-3161.	2.5	11
6	Foudroyant cerebral venous (sinus) thrombosis triggered through CLEC-2 and GPIIb/IIIa dependent platelet activation. , 2022, 1, 132-141.		18
7	The Platelet Collagen Receptor GPVI Is Cleaved by Tspan15/ADAM10 and Tspan33/ADAM10 Molecular Scissors. International Journal of Molecular Sciences, 2022, 23, 2440.	1.8	7
8	Rasa3 deficiency minimally affects thrombopoiesis but promotes severe thrombocytopenia due to integrin-dependent platelet clearance. JCI Insight, 2022, 7, .	2.3	6
9	Confocal Real-Time Analysis of Cutaneous Platelet Recruitment during Immune Complex‒Mediated Inflammation. Journal of Investigative Dermatology, 2022, 142, 2724-2732.e3.	0.3	4
10	Platelets drive fibronectin fibrillogenesis using integrin αIIbβ3. Science Advances, 2022, 8, eabj8331.	4.7	11
11	Both G protein–coupled and immunoreceptor tyrosine-based activation motif receptors mediate venous thrombosis in mice. Blood, 2022, 139, 3194-3203.	0.6	13
12	Rac Inhibition Causes Impaired GPVI Signalling in Human Platelets through GPVI Shedding and Reduction in PLCγ2 Phosphorylation. International Journal of Molecular Sciences, 2022, 23, 3746.	1.8	3
13	Activated Platelets Upregulate β2 Integrin Mac-1 (CD11b/CD18) on Dendritic Cells, Which Mediates Heterotypic Cell–Cell Interaction. Journal of Immunology, 2022, 208, 1729-1741.	0.4	7
14	Temporal Roles of Platelet and Coagulation Pathways in Collagen- and Tissue Factor-Induced Thrombus Formation. International Journal of Molecular Sciences, 2022, 23, 358.	1.8	16
15	An intravascular perspective on hyper-acute neutrophil, T-cell and platelet responses: Similarities between human and experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1561-1567.	2.4	5
16	Impaired microtubule dynamics contribute to microthrombocytopenia in RhoB-deficient mice. Blood Advances, 2022, 6, 5184-5197.	2.5	2
17	Lymphatic blood filling in CLEC-2-deficient mouse models. Platelets, 2021, 32, 352-367.	1.1	16
18	Different DOACs Control Inflammation in Cardiac Ischemia-Reperfusion Differently. Circulation Research, 2021, 128, 513-529.	2.0	26

#	Article	IF	CITATIONS
19	Differential Role of Glycoprotein VI in Mouse and Human Thrombus Progression and Stability. Thrombosis and Haemostasis, 2021, 121, 543-546.	1.8	4
20	Evidence that GPVI is Expressed as a Mixture of Monomers and Dimers, and that the D2 Domain is not Essential for GPVI Activation. Thrombosis and Haemostasis, 2021, 121, 1435-1447.	1.8	19
21	Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice. Journal of Neuroinflammation, 2021, 18, 46.	3.1	18
22	XPoRting (poly)phosphates limits thrombosis. Blood, 2021, 137, 1278-1280.	0.6	0
23	Differential regulation of the platelet GPIbâ€IX complex by antiâ€GPIbβ antibodies. Journal of Thrombosis and Haemostasis, 2021, 19, 2044-2055.	1.9	7
24	RhoA/Cdc42 signaling drives cytoplasmic maturation but not endomitosis in megakaryocytes. Cell Reports, 2021, 35, 109102.	2.9	13
25	Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Current Biology, 2021, 31, 2051-2064.e8.	1.8	17
26	Acquired platelet GPVI receptor dysfunction in critically ill patients with sepsis. Blood, 2021, 137, 3105-3115.	0.6	18
27	Microvesicles, but not platelets, bud off from mouse bone marrow megakaryocytes. Blood, 2021, 138, 1998-2001.	0.6	6
28	ANXA7 Regulates Platelet Lipid Metabolism and Ca ²⁺ Release in Arterial Thrombosis. Circulation Research, 2021, 129, 494-507.	2.0	16
29	Generation of a humanized FXII knockâ€in mouse—A powerful model system to test novel antiâ€thrombotic agents. Journal of Thrombosis and Haemostasis, 2021, 19, 2835-2840.	1.9	1
30	Targeting platelet glycoprotein VI attenuates progressive ischemic brain damage before recanalization during middle cerebral artery occlusion in mice. Experimental Neurology, 2021, 344, 113804.	2.0	10
31	Glenzocimab does not impact glycoprotein VI-dependent inflammatory hemostasis. Haematologica, 2021, 106, 2000-2003.	1.7	18
32	Infarct growth precedes cerebral thrombosis following experimental stroke in mice. Scientific Reports, 2021, 11, 22887.	1.6	9
33	Feasibility of platelet marker analysis in ischemic stroke patients and their association with one-year outcome. A pilot project within a subsample of the Stroke Induced Cardiac Failure in Mice and Men (SICFAIL) cohort study. Platelets, 2021, , 1-9.	1.1	1
34	Interspecies differences in protein expression do not impact the spatiotemporal regulation of glycoprotein VI mediated activation. Journal of Thrombosis and Haemostasis, 2020, 18, 485-496.	1.9	14
35	Local Leukocyte Invasion during Hyperacute Human Ischemic Stroke. Annals of Neurology, 2020, 87, 466-479.	2.8	50
36	Heterotrimeric G Protein Subunit Gαq Is a Master Switch for Gβγ-Mediated Calcium Mobilization by Gi-Coupled GPCRs. Molecular Cell, 2020, 80, 940-954.e6.	4.5	54

#	Article	IF	CITATIONS
37	CD84 Links T Cell and Platelet Activity in Cerebral Thrombo-Inflammation in Acute Stroke. Circulation Research, 2020, 127, 1023-1035.	2.0	52
38	Comparison of the central human and mouse platelet signaling cascade by systems biological analysis. BMC Genomics, 2020, 21, 897.	1.2	12
39	Actin/microtubule crosstalk during platelet biogenesis in mice is critically regulated by Twinfilin1 and Cofilin1. Blood Advances, 2020, 4, 2124-2134.	2.5	18
40	Genetic platelet depletion is superior in platelet transfusion compared to current models. Haematologica, 2020, 105, 1738-1749.	1.7	9
41	Platelets in Thrombo-Inflammation: Concepts, Mechanisms, and Therapeutic Strategies for Ischemic Stroke. Hamostaseologie, 2020, 40, 153-164.	0.9	22
42	Red blood cell-derived semaphorin 7A promotes thrombo-inflammation in myocardial ischemia-reperfusion injury through platelet GPIb. Nature Communications, 2020, 11, 1315.	5.8	39
43	Novel Approaches to Unravel Risk Factors and Mechanisms of Venous Thrombosis. Thrombosis and Haemostasis, 2020, 120, 372-372.	1.8	2
44	Critical redundant functions of the adapters Grb2 and Gads in platelet (hem)ITAM signaling in mice. Platelets, 2020, 31, 801-811.	1.1	1
45	Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived Galectin-3. Blood, 2020, 135, 1146-1160.	0.6	71
46	Coactosin-like 1 integrates signaling critical for shear-dependent thrombus formation in mouse platelets. Haematologica, 2020, 105, 1667-1676.	1.7	8
47	BIN2 orchestrates platelet calcium signaling in thrombosis and thrombo-inflammation. Journal of Clinical Investigation, 2020, 130, 6064-6079.	3.9	20
48	Thrombo-inflammation in acute ischaemic stroke — implications for treatment. Nature Reviews Neurology, 2019, 15, 473-481.	4.9	194
49	Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis. Frontiers in Cardiovascular Medicine, 2019, 6, 99.	1.1	12
50	Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis. Blood, 2019, 134, 1847-1858.	0.6	22
51	Loss of Orai2-Mediated Capacitative Ca ²⁺ Entry Is Neuroprotective in Acute Ischemic Stroke. Stroke, 2019, 50, 3238-3245.	1.0	33
52	Defective Zn2+ homeostasis in mouse and human platelets with α- and δ-storage pool diseases. Scientific Reports, 2019, 9, 8333.	1.6	20
53	Targeting Platelet GPVI Plus rt-PA Administration but Not α2β1-Mediated Collagen Binding Protects against Ischemic Brain Damage in Mice. International Journal of Molecular Sciences, 2019, 20, 2019.	1.8	24
54	Identification of a Clinically Relevant Signature for Early Progression in KRAS-Driven Lung Adenocarcinoma. Cancers, 2019, 11, 600.	1.7	5

#	Article	IF	CITATIONS
55	Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine, 2019, 25, 641-655.	15.2	259
56	Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood, 2019, 133, 2696-2706.	0.6	58
57	Platelet lamellipodium formation is not required for thrombus formation and stability. Blood, 2019, 134, 2318-2329.	0.6	35
58	Platelets as Modulators of Cerebral Ischemia/Reperfusion Injury. Frontiers in Immunology, 2019, 10, 2505.	2.2	69
59	How is the formation of microthrombi after traumatic brain injury linked to inflammation?. Journal of Neuroimmunology, 2019, 326, 9-13.	1.1	12
60	Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium, 2019, 77, 39-48.	1.1	55
61	Functional significance of the platelet immune receptors GPVI and CLEC-2. Journal of Clinical Investigation, 2019, 129, 12-23.	3.9	216
62	The contribution of platelet glycoprotein receptors to inflammatory bleeding prevention is stimulus and organ dependent. Haematologica, 2018, 103, e256-e258.	1.7	50
63	Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nature Communications, 2018, 9, 1523.	5.8	86
64	Neutrophil infiltration to the brain is plateletâ€dependent, and is reversed by blockade of platelet GPlb <i>α</i> . Immunology, 2018, 154, 322-328.	2.0	36
65	Influence of Thrombolysis on the Safety and Efficacy of Blocking Platelet Adhesion or Secretory Activity in Acute Ischemic Stroke in Mice. Translational Stroke Research, 2018, 9, 493-498.	2.3	12
66	GPVI signaling is compromised in newly formed platelets after acute thrombocytopenia in mice. Blood, 2018, 131, 1106-1110.	0.6	18
67	TRPM7 Kinase Controls Calcium Responses in Arterial Thrombosis and Stroke in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 344-352.	1.1	42
68	Profilin 1–mediated cytoskeletal rearrangements regulate integrin function in mouse platelets. Blood Advances, 2018, 2, 1040-1045.	2.5	12
69	ADAP deficiency impairs megakaryocyte polarization with ectopic proplatelet release and causes microthrombocytopenia. Blood, 2018, 132, 635-646.	0.6	32
70	Antibody-mediated inhibition of FXIIa blocks downstream bradykinin generation. Journal of Allergy and Clinical Immunology, 2018, 142, 1355-1358.	1.5	31
71	Model systems for platelet receptor shedding. Platelets, 2017, 28, 325-332.	1.1	25

72 Platelets in Acute Ischemic Stroke. , 2017, , 1029-1041.

5

#	Article	IF	CITATIONS
73	Platelet secretion is crucial to prevent bleeding in the ischemic brain but not in the inflamed skin or lung in mice. Blood, 2017, 129, 1702-1706.	0.6	54
74	GPVI and Thromboxane Receptor on Platelets Promote Proinflammatory Macrophage Phenotypes during CutaneousÂInflammation. Journal of Investigative Dermatology, 2017, 137, 686-695.	0.3	44
75	Congenital valvular defects associated with deleterious mutations in thePLD1gene. Journal of Medical Genetics, 2017, 54, 278-286.	1.5	36
76	Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation. Platelets, 2017, 28, 629-642.	1.1	21
77	CLEC-2 contributes to hemostasis independently of classical hemITAM signaling in mice. Blood, 2017, 130, 2224-2228.	0.6	41
78	The Neurobeachin-like 2 Protein Regulates Mast Cell Homeostasis. Journal of Immunology, 2017, 199, 2948-2957.	0.4	15
79	CK2Î ² regulates thrombopoiesis and Ca2+-triggered platelet activation in arterial thrombosis. Blood, 2017, 130, 2774-2785.	0.6	40
80	Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nature Communications, 2017, 8, 127.	5.8	104
81	A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis. Nature Communications, 2017, 8, 15838.	5.8	50
82	Blocking of platelet glycoprotein receptor Ib reduces "thrombo-inflammation―in mice with acute ischemic stroke. Journal of Neuroinflammation, 2017, 14, 18.	3.1	52
83	Platelets and Stroke. Cardiac and Vascular Biology, 2017, , 253-274.	0.2	1
84	Platelet receptors as therapeutic targets: Past, present and future. Thrombosis and Haemostasis, 2017, 117, 1249-1257.	1.8	57
85	Twinfilin 2a regulates platelet reactivity and turnover in mice. Blood, 2017, 130, 1746-1756.	0.6	33
86	Mouse Models of Thrombosis. , 2017, , 681-698.		0
87	<scp>FXII</scp> a inhibitor <scp>rHA</scp> â€infestinâ€4: Safe thromboprotection in experimental venous, arterial and foreign surfaceâ€induced thrombosis. British Journal of Haematology, 2016, 173, 769-778.	1.2	36
88	Platelets in Ischemic Stroke. , 2016, , 293-306.		0
89	RhoA/ROCK guides NMII on the way to MK polyploidy. Blood, 2016, 128, 3025-3026.	0.6	2
90	Inhibition of Platelet GPVI Protects Against Myocardial Ischemia–Reperfusion Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 629-635.	1.1	60

#	Article	IF	CITATIONS
91	The Novel Oral Syk Inhibitor, Bl1002494, Protects Mice From Arterial Thrombosis and Thromboinflammatory Brain Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1247-1253.	1.1	62
92	Proplatelet formation is selectively inhibited by collagen type I via Syk-independent GPVI signaling. Journal of Cell Science, 2016, 129, 3473-84.	1.2	37
93	Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function. Cell Reports, 2016, 16, 2197-2207.	2.9	55
94	TMEM16F-Mediated Platelet Membrane Phospholipid Scrambling Is Critical for Hemostasis and Thrombosis but not Thromboinflammation in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2152-2157.	1.1	45
95	A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood, 2016, 127, 2903-2914.	0.6	121
96	FcγRIIB on liver sinusoidal endothelial cells is essential for antibody-induced GPVI ectodomain shedding in mice. Blood, 2016, 128, 862-865.	0.6	9
97	Targeting coagulation factor XII as a novel therapeutic option in brain trauma. Annals of Neurology, 2016, 79, 970-982.	2.8	28
98	Survival protein anoctaminâ€6 controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage. FASEB Journal, 2016, 30, 727-737.	0.2	52
99	Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture. Nature Communications, 2016, 7, 11097.	5.8	84
100	Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice. PLoS ONE, 2016, 11, e0147664.	1.1	25
101	Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight. PLoS ONE, 2016, 11, e0157607.	1.1	25
102	Mouse Models for Platelet Production and Function. , 2016, , 239-263.		0
103	The expression of mouse CLECâ€2 on leucocyte subsets varies according to their anatomical location and inflammatory state. European Journal of Immunology, 2015, 45, 2484-2493.	1.6	38
104	Cooperative and alternate functions for STIM1 and STIM2 in macrophage activation and in the context of inflammation. Immunity, Inflammation and Disease, 2015, 3, 154-170.	1.3	22
105	Rap1-GTP–interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood, 2015, 125, 219-222.	0.6	73
106	Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood, 2015, 125, 3769-3777.	0.6	73
107	Targeted downregulation of platelet CLEC-2 occurs through Syk-independent internalization. Blood, 2015, 125, 4069-4077.	0.6	34
108	Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex–mediated inflammation in mice. Blood, 2015, 126, 1017-1026.	0.6	149

#	Article	IF	CITATIONS
109	Platelet-derived VWF is not essential for normal thrombosis and hemostasis but fosters ischemic stroke injury in mice. Blood, 2015, 126, 1715-1722.	0.6	65
110	PLD1 participates in BDNF-induced signalling in cortical neurons. Scientific Reports, 2015, 5, 14778.	1.6	27
111	Orai1 controls C5aâ€induced neutrophil recruitment in inflammation. European Journal of Immunology, 2015, 45, 2143-2153.	1.6	26
112	STIM1, STIM2, and Orai1 regulate storeâ€operated calcium entry and purinergic activation of microglia. Glia, 2015, 63, 652-663.	2.5	90
113	Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5). PLoS ONE, 2015, 10, e0133429.	1.1	4
114	Megakaryocyte rupture for acute platelet needs. Journal of Cell Biology, 2015, 209, 327-328.	2.3	11
115	Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. Journal of Experimental Medicine, 2015, 212, 129-137.	4.2	87
116	Critical Role of Platelet Glycoprotein Ibα in Arterial Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 589-597.	1.1	30
117	Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation. Annals of Neurology, 2015, 77, 784-803.	2.8	78
118	CD28 Superagonist-Mediated Boost of Regulatory T Cells Increases Thrombo-Inflammation and Ischemic Neurodegeneration during the Acute Phase of Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 6-10.	2.4	67
119	Platelets are relevant mediators of renal injury induced by primary endothelial lesions. American Journal of Physiology - Renal Physiology, 2015, 308, F1238-F1246.	1.3	19
120	Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood, 2015, 126, 683-691.	0.6	203
121	Platelet G _i protein Cl̂± _{i2} is an essential mediator of thrombo-inflammatory organ damage in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6491-6496.	3.3	35
122	Efficacy and Safety of Platelet Glycoprotein Receptor Blockade in Aged and Comorbid Mice With Acute Experimental Stroke. Stroke, 2015, 46, 3502-3506.	1.0	54
123	SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice. Blood, 2015, 125, 185-194.	0.6	27
124	Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration. Molecular Biology of the Cell, 2015, 26, 506-517.	0.9	23
125	Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells. Oncotarget, 2015, 6, 5354-5368.	0.8	12
126	Megakaryocyte rupture for acute platelet needs. Journal of Experimental Medicine, 2015, 212, 2125OIA24.	4.2	0

#	Article	IF	CITATIONS
127	The Adaptor Protein Swiprosin-1/EFhd2 Is Dispensable for Platelet Function in Mice. PLoS ONE, 2014, 9, e107139.	1.1	6
128	Syk and Src Family Kinases Regulate C-type Lectin Receptor 2 (CLEC-2)-mediated Clustering of Podoplanin and Platelet Adhesion to Lymphatic Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 35695-35710.	1.6	70
129	Megakaryocyte-specific Profilin1-deficiency alters microtubule stability and causes a Wiskott–Aldrich syndrome-like platelet defect. Nature Communications, 2014, 5, 4746.	5.8	81
130	Phospholipase D1 is involved in αâ€adrenergic contraction of murine vascular smooth muscle. FASEB Journal, 2014, 28, 1044-1048.	0.2	5
131	Targeting Glycoprotein VI and the Immunoreceptor Tyrosine-Based Activation Motif Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1615-1620.	1.1	44
132	Phospholipase D1 mediates lymphocyte adhesion and migration in experimental autoimmune encephalomyelitis. European Journal of Immunology, 2014, 44, 2295-2305.	1.6	28
133	Growth Factor Receptor–Bound Protein 2 Contributes to (Hem)Immunoreceptor Tyrosine-Based Activation Motif–Mediated Signaling in Platelets. Circulation Research, 2014, 114, 444-453.	2.0	18
134	Impaired brain development and reduced cognitive function in phospholipase D-deficient mice. Neuroscience Letters, 2014, 572, 48-52.	1.0	33
135	Mechanistic explanation for platelet contribution to cancer metastasis. Thrombosis Research, 2014, 133, S149-S157.	0.8	134
136	Analysis of the role of von Willebrand factor, platelet glycoprotein VI-, and α2β1-mediated collagen binding in thrombus formation. Blood, 2014, 124, 1799-1807.	0.6	26
137	Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. Journal of Clinical Investigation, 2014, 124, 273-284.	3.9	179
138	Von Willebrand Factor Regulation in Patients with Acute and Chronic Cerebrovascular Disease: A Pilot, Case–Control Study. PLoS ONE, 2014, 9, e99851.	1.1	27
139	Mice Lacking the SLAM Family Member CD84 Display Unaltered Platelet Function in Hemostasis and Thrombosis. PLoS ONE, 2014, 9, e115306.	1.1	14
140	Aberrant Microtubule Organization and Wiskott-Aldrich Syndrome-like Defects in Platelets and Megakaryocytes of Profilin1-Deficient Mice. Blood, 2014, 124, 4200-4200.	0.6	0
141	Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature, 2013, 502, 105-109.	13.7	275
142	Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nature Medicine, 2013, 19, 1161-1165.	15.2	136
143	Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood, 2013, 121, 679-691.	0.6	300
144	Integrin α ₆ β ₁ Is the Main Receptor for Vascular Laminins and Plays a Role in Platelet Adhesion, Activation, and Arterial Thrombosis. Circulation, 2013, 128, 541-552.	1.6	85

#	Article	IF	CITATIONS
145	Pharmacological Inhibition of Phospholipase D Protects Mice From Occlusive Thrombus Formation and Ischemic Stroke—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2212-2217.	1.1	60
146	FTY720 Ameliorates Acute Ischemic Stroke in Mice by Reducing Thrombo-Inflammation but Not by Direct Neuroprotection. Stroke, 2013, 44, 3202-3210.	1.0	164
147	Combined In Vivo Depletion of Glycoprotein VI and C-Type Lectin-Like Receptor 2 Severely Compromises Hemostasis and Abrogates Arterial Thrombosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 926-934.	1.1	121
148	The <i>Nbeal2^{â^'/â^'}</i> mouse as a model for the gray platelet syndrome. Rare Diseases (Austin, Tex), 2013, 1, e26561.	1.8	20
149	Only severe thrombocytopenia results in bleeding and defective thrombus formation in mice. Blood, 2013, 121, 4938-4947.	0.6	114
150	Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42. Blood, 2013, 122, 3178-3187.	0.6	94
151	(Dis)solving the stroke problem by vWF inhibition?. Blood, 2013, 121, 4972-4974.	0.6	3
152	Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. Journal of Clinical Investigation, 2013, 123, 3331-3342.	3.9	151
153	Cholesterol loss during glutamate-mediated excitotoxicity. EMBO Journal, 2012, 31, 1764-1773.	3.5	83
154	Altered BCR signalling quality predisposes to autoimmune disease and a pre-diabetic state. EMBO Journal, 2012, 31, 3363-3374.	3.5	33
155	The dimeric platelet collagen receptor GPVI-Fc reduces platelet adhesion to activated endothelium and preserves myocardial function after transient ischemia in mice. American Journal of Physiology - Cell Physiology, 2012, 303, C757-C766.	2.1	77
156	Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 Integrin Mediates Interaction of Melanoma Cells with Platelets. Journal of Biological Chemistry, 2012, 287, 2168-2178.	1.6	95
157	Key Roles for the Lipid Signaling Enzyme Phospholipase D1 in the Tumor Microenvironment During Tumor Angiogenesis and Metastasis. Science Signaling, 2012, 5, ra79.	1.6	120
158	Antithrombotic Potential of Blockers of Store-Operated Calcium Channels in Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1717-1723.	1.1	40
159	Platelets Contribute to the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Circulation Research, 2012, 110, 1202-1210.	2.0	172
160	Mice Lacking the ITIM-Containing Receptor G6b-B Exhibit Macrothrombocytopenia and Aberrant Platelet Function. Science Signaling, 2012, 5, ra78.	1.6	65
161	CLP36 Is a Negative Regulator of Glycoprotein VI Signaling in Platelets. Circulation Research, 2012, 111, 1410-1420.	2.0	22
162	Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood, 2012, 119, 1054-1063.	0.6	150

#	Article	IF	CITATIONS
163	Altered microtubule equilibrium and impaired thrombus stability in mice lacking RanBP10. Blood, 2012, 120, 3594-3602.	0.6	16
164	Kininogen deficiency protects from ischemic neurodegeneration in mice by reducing thrombosis, blood-brain barrier damage, and inflammation. Blood, 2012, 120, 4082-4092.	0.6	119
165	Size does matter: VWF in MI. Blood, 2012, 120, 5096-5097.	0.6	4
166	Better Safe Than Sorry. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 552-553.	1.1	3
167	Platelet GPVI: a target for antithrombotic therapy?!. Trends in Pharmacological Sciences, 2012, 33, 583-590.	4.0	118
168	C1-Inhibitor Protects From Brain Ischemia-Reperfusion Injury by Combined Antiinflammatory and Antithrombotic Mechanisms. Stroke, 2012, 43, 2457-2467.	1.0	80
169	Platelets guide lymphocytes to vascular injury sites. Thrombosis and Haemostasis, 2012, 108, 207-207.	1.8	2
170	A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nature Immunology, 2011, 12, 1194-1201.	7.0	178
171	STIM and Orai in hemostasis and thrombosis. Frontiers in Bioscience - Landmark, 2011, 16, 2144.	3.0	42
172	Dividing VI by X(a). Blood, 2011, 117, 3704-3705.	0.6	3
173	Sugar rush bleeds the brain. Nature Medicine, 2011, 17, 161-162.	15.2	3
174	Ischaemic stroke: a thromboâ€inflammatory disease?. Journal of Physiology, 2011, 589, 4115-4123.	1.3	162
175	STIM and Orai in platelet function. Cell Calcium, 2011, 50, 270-278.	1.1	77
176	Platelet receptor signaling in thrombus formation. Journal of Molecular Medicine, 2011, 89, 109-121.	1.7	169
177	Sustained Reperfusion after Blockade of Glycoprotein-Receptor-Ib in Focal Cerebral Ischemia: An MRI Study at 17.6 Tesla. PLoS ONE, 2011, 6, e18386.	1.1	29
178	Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets. Blood, 2010, 115, 3364-3373.	0.6	114
179	Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood, 2010, 115, 3835-3842.	0.6	315
180	The smaller, the better: VWF in stroke. Blood, 2010, 115, 1477-1478.	0.6	11

#	Article	IF	CITATIONS
181	ADF/n-cofilin–dependent actin turnover determines platelet formation and sizing. Blood, 2010, 116, 1767-1775.	0.6	73
182	von Willebrand factor promotes leukocyte extravasation. Blood, 2010, 116, 4712-4719.	0.6	179
183	Differentially regulated GPVI ectodomain shedding by multiple platelet–expressed proteinases. Blood, 2010, 116, 3347-3355.	0.6	116
184	Impaired α _{IIb} β ₃ Integrin Activation and Shear-Dependent Thrombus Formation in Mice Lacking Phospholipase D1. Science Signaling, 2010, 3, ra1.	1.6	175
185	Factor XIIa Inhibitor Recombinant Human Albumin Infestin-4 Abolishes Occlusive Arterial Thrombus Formation Without Affecting Bleeding. Circulation, 2010, 121, 1510-1517.	1.6	177
186	Binding of von Willebrand Factor to Collagen and Glycoprotein Ibα, But Not to Glycoprotein IIb/IIIa, Contributes to Ischemic Stroke in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1949-1951.	1.1	63
187	Roles of Platelet STIM1 and Orai1 in Glycoprotein VI- and Thrombin-dependent Procoagulant Activity and Thrombus Formation. Journal of Biological Chemistry, 2010, 285, 23629-23638.	1.6	100
188	Stromal Interaction Molecules 1 and 2 Are Key Regulators of Autoreactive T Cell Activation in Murine Autoimmune Central Nervous System Inflammation. Journal of Immunology, 2010, 184, 1536-1542.	0.4	96
189	Inhibition of Platelet GPlbÎ \pm and Promotion of Melanoma Metastasis. Journal of Investigative Dermatology, 2010, 130, 576-586.	0.3	75
190	Combating innate inflammation: a new paradigm for acute treatment of stroke?. Annals of the New York Academy of Sciences, 2010, 1207, 149-154.	1.8	76
191	Impact of glycoprotein VI and platelet adhesion on atherosclerosis—A possible role of fibronectin. Journal of Molecular and Cellular Cardiology, 2010, 49, 532-542.	0.9	107
192	STIM1-Independent T Cell Development and Effector Function In Vivo. Journal of Immunology, 2009, 182, 3390-3397.	0.4	73
193	STIM2 Regulates Capacitive Ca ²⁺ Entry in Neurons and Plays a Key Role in Hypoxic Neuronal Cell Death. Science Signaling, 2009, 2, ra67.	1.6	233
194	Deficiency of the Tetraspanin CD63 Associated with Kidney Pathology but Normal Lysosomal Function. Molecular and Cellular Biology, 2009, 29, 1083-1094.	1.1	99
195	Rac1 is essential for phospholipase C-γ2 activation in platelets. Pflugers Archiv European Journal of Physiology, 2009, 457, 1173-1185.	1.3	102
196	STIM1 is essential for Fcl ³ receptor activation and autoimmune inflammation. Blood, 2009, 113, 1097-1104.	0.6	105
197	CEACAM1 negatively regulates platelet-collagen interactions and thrombus growth in vitro and in vivo. Blood, 2009, 113, 1818-1828.	0.6	70
198	Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood, 2009, 113, 2056-2063.	0.6	239

#	Article	IF	CITATIONS
199	Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood, 2009, 113, 3600-3603.	0.6	148
200	CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood, 2009, 114, 3464-3472.	0.6	200
201	Store-operated Ca2+ entry in platelets occurs independently of transient receptor potential (TRP) C1. Pflugers Archiv European Journal of Physiology, 2008, 457, 377-387.	1.3	81
202	Kindlin-3 is essential for integrin activation and platelet aggregation. Nature Medicine, 2008, 14, 325-330.	15.2	599
203	Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood, 2008, 112, 3555-3562.	0.6	190
204	Transdermal 17-β estradiol replacement therapy reduces megakaryocyte GPVI expression. Thrombosis Research, 2008, 123, 93-99.	0.8	4
205	Cell Adhesion Mechanisms in Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 403-412.	1.1	505
206	The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. Journal of Experimental Medicine, 2008, 205, 1583-1591.	4.2	210
207	Blocking of Platelets or Intrinsic Coagulation Pathway–Driven Thrombosis Does Not Prevent Cerebral Infarctions Induced by Photothrombosis. Stroke, 2008, 39, 1262-1268.	1.0	48
208	Targeting Platelets in Acute Experimental Stroke. Circulation, 2007, 115, 2323-2330.	1.6	338
209	Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. Journal of Experimental Medicine, 2007, 204, 3113-3118.	4.2	227
210	Diverging signaling events control the pathway of GPVI down-regulation in vivo. Blood, 2007, 110, 529-535.	0.6	64
211	In Vivo Thrombus Formation in Murine Models. Circulation Research, 2007, 100, 979-991.	2.0	140
212	Role of murine integrin α2β1 in thrombus stabilization and embolization: Contribution of thromboxane A2. Thrombosis and Haemostasis, 2007, 98, 1072-1080.	1.8	34
213	An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. Journal of Clinical Investigation, 2007, 117, 3540-3550.	3.9	139
214	Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. Journal of Experimental Medicine, 2006, 203, 513-518.	4.2	407
215	Reduced thrombus stability in mice lacking the α2A-adrenergic receptor. Blood, 2006, 108, 510-514.	0.6	62
216	Two-Phase Antithrombotic Protection After Anti-Glycoprotein VI Treatment in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1640-1647.	1.1	47

#	Article	IF	CITATIONS
217	Relative antithrombotic effect of soluble GPVI dimer compared with anti-GPVI antibodies in mice. Blood, 2005, 105, 1492-1499.	0.6	85
218	The Glycoprotein VI-Phospholipase Cγ2 Signaling Pathway Controls Thrombus Formation Induced by Collagen and Tissue Factor In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2673-2678.	1.1	82
219	Evidence for a Role of ADAM17 (TACE) in the Regulation of Platelet Glycoprotein V. Journal of Biological Chemistry, 2005, 280, 14462-14468.	1.6	97
220	Defective thrombus formation in mice lacking coagulation factor XII. Journal of Experimental Medicine, 2005, 202, 271-281.	4.2	618
221	Effects of Estrogen Replacement Therapies on Mouse Platelet Function and Glycoprotein VI Levels. Circulation Research, 2005, 97, 415-417.	2.0	27
222	Aspirin Induces Platelet Receptor Shedding via ADAM17 (TACE). Journal of Biological Chemistry, 2005, 280, 39716-39722.	1.6	56
223	Immune Thrombocytopenia Mediated by Anti-GPIbα Antibodies May Occur Via an FcR-Independent Pathway: A Potential Explanation for Refractory Cases to IVIG Therapy Blood, 2005, 106, 217-217.	0.6	0
224	GPVI down-regulation in murine platelets through metalloproteinase-dependent shedding. Thrombosis and Haemostasis, 2004, 91, 951-958.	1.8	79
225	Flow-Cytometric Analysis of Mouse Platelet Function. , 2004, 272, 255-268.		19
226	Anti–Glycoprotein VI Treatment Severely Compromises Hemostasis in Mice With Reduced α2β1Levels or Concomitant Aspirin Therapy. Circulation, 2004, 110, 2946-2951.	1.6	102
227	Unresponsiveness of Platelets Lacking Both Cαq and Gα13. Journal of Biological Chemistry, 2004, 279, 45354-45359.	1.6	56
228	Facilitating roles of murine platelet glycoprotein Ib and αIIbβ3 in phosphatidylserine exposure during vWF-collagen-induced thrombus formation. Journal of Physiology, 2004, 558, 403-415.	1.3	20
229	Genetic variation responsible for mouse strain differences in integrin α2 expression is associated with altered platelet responses to collagen. Blood, 2004, 103, 3396-3402.	0.6	41
230	Distinctive Efficacy of IVIG in Ameliorating Thrombocytopenia Induced by Anti-Platelet GPIIbIIIa and GPIbα Antibodies Blood, 2004, 104, 2076-2076.	0.6	0
231	G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nature Medicine, 2003, 9, 1418-1422.	15.2	227
232	A Crucial Role of Glycoprotein VI for Platelet Recruitment to the Injured Arterial Wall In Vivo. Journal of Experimental Medicine, 2003, 197, 41-49.	4.2	453
233	Platelet-Mediated Modulation of Adaptive Immunity. Immunity, 2003, 19, 9-19.	6.6	353
234	Targeting of platelet integrin alphallbbeta3 determines systemic reaction and bleeding in murine thrombocytopenia regulated by activating and inhibitory FcgammaR. International Immunology, 2003, 15, 341-349.	1.8	17

#	Article	IF	CITATIONS
235	Complementary roles of platelet glycoprotein VI and integrin α2β1 in collagenâ€ i nduced thrombus formation in flowing whole blood ex vivo. FASEB Journal, 2003, 17, 685-687.	0.2	136
236	Targeting of the collagen-binding site on glycoprotein VI is not essential for in vivo depletion of the receptor. Blood, 2003, 101, 3948-3952.	0.6	57
237	Platelet-collagen interaction: is GPVI the central receptor?. Blood, 2003, 102, 449-461.	0.6	974
238	Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood, 2003, 102, 4021-4027.	0.6	119
239	Costimulation of Gi- and G12/G13-mediated Signaling Pathways Induces Integrin αIIbβ3 Activation in Platelets. Journal of Biological Chemistry, 2002, 277, 39493-39498.	1.6	100
240	Integrin α2-Deficient Mice Develop Normally, Are Fertile, but Display Partially Defective Platelet Interaction with Collagen. Journal of Biological Chemistry, 2002, 277, 10789-10794.	1.6	238
241	Differential effects of reduced glycoprotein VI levels on activation of murine platelets by glycoprotein VI ligands. Biochemical Journal, 2002, 368, 293-300.	1.7	45
242	Absence of GPIbα is responsible for aberrant membrane development during megakaryocyte maturation. Experimental Hematology, 2002, 30, 352-360.	0.2	86
243	Flow cytometric detection of activated mouse integrin ?IIb?3 with a novel monoclonal antibody. Cytometry, 2002, 48, 80-86.	1.8	136
244	Differential Regulation of Rho and Rac through Heterotrimeric G-proteins and Cyclic Nucleotides. Journal of Biological Chemistry, 2001, 276, 47906-47913.	1.6	86
245	Evidence for cross-talk between glycoprotein VI and Gi-coupled receptors during collagen-induced platelet aggregation. Blood, 2001, 97, 3829-3835.	0.6	86
246	Platelet glycoprotein V binds to collagen and participates in platelet adhesion and aggregation. Blood, 2001, 98, 1038-1046.	0.6	122
247	Long-Term Antithrombotic Protection by in Vivo Depletion of Platelet Glycoprotein VI in Mice. Journal of Experimental Medicine, 2001, 193, 459-470.	4.2	321
248	A Novel Viper Venom Metalloproteinase, Alborhagin, Is an Agonist at the Platelet Collagen Receptor GPVI. Journal of Biological Chemistry, 2001, 276, 28092-28097.	1.6	60
249	Evidence for Two Distinct Epitopes within Collagen for Activation of Murine Platelets. Journal of Biological Chemistry, 2001, 276, 364-368.	1.6	36
250	Rhodocytin (Aggretin) Activates Platelets Lacking α2β1 Integrin, Glycoprotein VI, and the Ligand-binding Domain of Glycoprotein lbα. Journal of Biological Chemistry, 2001, 276, 25121-25126.	1.6	76
251	Structural and functional characterization of the mouse von Willebrand factor receptor GPIb-IX with novel monoclonal antibodies. Blood, 2000, 95, 886-893.	0.6	152
252	Identification of critical antigen-specific mechanisms in the development of immune thrombocytopenic purpura in mice. Blood, 2000, 96, 2520-2527.	0.6	258

#	Article	IF	CITATIONS
253	Expression and Function of the Mouse Collagen Receptor Glycoprotein VI Is Strictly Dependent on Its Association with the FcRÎ ³ Chain. Journal of Biological Chemistry, 2000, 275, 23998-24002.	1.6	195
254	Acute Systemic Reaction and Lung Alterations Induced by an Antiplatelet Integrin gpIIb/IIIa Antibody in Mice. Blood, 1999, 94, 684-693.	0.6	69
255	Heterotrimeric G Protein Subunit Gαq is a Master Switch for Gβγ-Mediated Calcium Mobilization by Gi-Coupled GPCRs. SSRN Electronic Journal, 0, , .	0.4	1