Bernhard Nieswandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7877172/publications.pdf

Version: 2024-02-01

255 papers

20,293 citations

79 h-index

6613

133 g-index

261 all docs

261 docs citations

times ranked

261

16574 citing authors

#	Article	IF	CITATIONS
1	Platelet-collagen interaction: is GPVI the central receptor?. Blood, 2003, 102, 449-461.	1.4	974
2	Defective thrombus formation in mice lacking coagulation factor XII. Journal of Experimental Medicine, 2005, 202, 271-281.	8. 5	618
3	Kindlin-3 is essential for integrin activation and platelet aggregation. Nature Medicine, 2008, 14, 325-330.	30.7	599
4	Cell Adhesion Mechanisms in Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 403-412.	2.4	505
5	A Crucial Role of Glycoprotein VI for Platelet Recruitment to the Injured Arterial Wall In Vivo. Journal of Experimental Medicine, 2003, 197, 41-49.	8.5	453
6	Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. Journal of Experimental Medicine, 2006, 203, 513-518.	8. 5	407
7	Platelet-Mediated Modulation of Adaptive Immunity. Immunity, 2003, 19, 9-19.	14.3	353
8	Targeting Platelets in Acute Experimental Stroke. Circulation, 2007, 115, 2323-2330.	1.6	338
9	Long-Term Antithrombotic Protection by in Vivo Depletion of Platelet Glycoprotein VI in Mice. Journal of Experimental Medicine, 2001, 193, 459-470.	8.5	321
10	Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood, 2010, 115, 3835-3842.	1.4	315
11	Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood, 2013, 121, 679-691.	1.4	300
12	Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature, 2013, 502, 105-109.	27.8	275
13	Platelet $CPIb\hat{l\pm}$ is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine, 2019, 25, 641-655.	30.7	259
14	Identification of critical antigen-specific mechanisms in the development of immune thrombocytopenic purpura in mice. Blood, 2000, 96, 2520-2527.	1.4	258
15	Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood, 2009, 113, 2056-2063.	1.4	239
16	Integrin α2-Deficient Mice Develop Normally, Are Fertile, but Display Partially Defective Platelet Interaction with Collagen. Journal of Biological Chemistry, 2002, 277, 10789-10794.	3.4	238
17	STIM2 Regulates Capacitive Ca ²⁺ Entry in Neurons and Plays a Key Role in Hypoxic Neuronal Cell Death. Science Signaling, 2009, 2, ra67.	3.6	233
18	G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nature Medicine, 2003, 9, 1418-1422.	30.7	227

#	Article	IF	CITATIONS
19	Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. Journal of Experimental Medicine, 2007, 204, 3113-3118.	8.5	227
20	Functional significance of the platelet immune receptors GPVI and CLEC-2. Journal of Clinical Investigation, 2019, 129, 12-23.	8.2	216
21	The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. Journal of Experimental Medicine, 2008, 205, 1583-1591.	8.5	210
22	Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood, 2015, 126, 683-691.	1.4	203
23	CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood, 2009, 114, 3464-3472.	1.4	200
24	Expression and Function of the Mouse Collagen Receptor Glycoprotein VI is Strictly Dependent on Its Association with the $FcR\hat{l}^3$ Chain. Journal of Biological Chemistry, 2000, 275, 23998-24002.	3.4	195
25	Thrombo-inflammation in acute ischaemic stroke — implications for treatment. Nature Reviews Neurology, 2019, 15, 473-481.	10.1	194
26	Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood, 2008, 112, 3555-3562.	1.4	190
27	von Willebrand factor promotes leukocyte extravasation. Blood, 2010, 116, 4712-4719.	1.4	179
28	Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. Journal of Clinical Investigation, 2014, 124, 273-284.	8.2	179
29	A platelet-mediated system for shuttling blood-borne bacteria to CD8 \hat{i} ±+ dendritic cells depends on glycoprotein GPIb and complement C3. Nature Immunology, 2011, 12, 1194-1201.	14.5	178
30	Factor XIIa Inhibitor Recombinant Human Albumin Infestin-4 Abolishes Occlusive Arterial Thrombus Formation Without Affecting Bleeding. Circulation, 2010, 121, 1510-1517.	1.6	177
31	Impaired \hat{l}_{\pm} _{IIb} \hat{l}^2 ₃ Integrin Activation and Shear-Dependent Thrombus Formation in Mice Lacking Phospholipase D1. Science Signaling, 2010, 3, ra1.	3.6	175
32	Platelets Contribute to the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Circulation Research, 2012, 110, 1202-1210.	4.5	172
33	Platelet receptor signaling in thrombus formation. Journal of Molecular Medicine, 2011, 89, 109-121.	3.9	169
34	FTY720 Ameliorates Acute Ischemic Stroke in Mice by Reducing Thrombo-Inflammation but Not by Direct Neuroprotection. Stroke, 2013, 44, 3202-3210.	2.0	164
35	Ischaemic stroke: a thromboâ€inflammatory disease?. Journal of Physiology, 2011, 589, 4115-4123.	2.9	162
36	Structural and functional characterization of the mouse von Willebrand factor receptor GPIb-IX with novel monoclonal antibodies. Blood, 2000, 95, 886-893.	1.4	152

#	Article	IF	Citations
37	Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. Journal of Clinical Investigation, 2013, 123, 3331-3342.	8.2	151
38	Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood, 2012, 119, 1054-1063.	1.4	150
39	Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex–mediated inflammation in mice. Blood, 2015, 126, 1017-1026.	1.4	149
40	Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood, 2009, 113, 3600-3603.	1.4	148
41	In Vivo Thrombus Formation in Murine Models. Circulation Research, 2007, 100, 979-991.	4.5	140
42	An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. Journal of Clinical Investigation, 2007, 117, 3540-3550.	8.2	139
43	Flow cytometric detection of activated mouse integrin ?IIb?3 with a novel monoclonal antibody. Cytometry, 2002, 48, 80-86.	1.8	136
44	Complementary roles of platelet glycoprotein VI and integrin α2β1 in collagenâ€induced thrombus formation in flowing whole blood ex vivo. FASEB Journal, 2003, 17, 685-687.	0.5	136
45	Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nature Medicine, 2013, 19, 1161-1165.	30.7	136
46	Mechanistic explanation for platelet contribution to cancer metastasis. Thrombosis Research, 2014, 133, S149-S157.	1.7	134
47	Platelet glycoprotein V binds to collagen and participates in platelet adhesion and aggregation. Blood, 2001, 98, 1038-1046.	1.4	122
48	Combined In Vivo Depletion of Glycoprotein VI and C-Type Lectin-Like Receptor 2 Severely Compromises Hemostasis and Abrogates Arterial Thrombosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 926-934.	2.4	121
49	A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood, 2016, 127, 2903-2914.	1.4	121
50	Key Roles for the Lipid Signaling Enzyme Phospholipase D1 in the Tumor Microenvironment During Tumor Angiogenesis and Metastasis. Science Signaling, 2012, 5, ra79.	3.6	120
51	Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood, 2003, 102, 4021-4027.	1.4	119
52	Kininogen deficiency protects from ischemic neurodegeneration in mice by reducing thrombosis, blood-brain barrier damage, and inflammation. Blood, 2012, 120, 4082-4092.	1.4	119
53	Platelet GPVI: a target for antithrombotic therapy?!. Trends in Pharmacological Sciences, 2012, 33, 583-590.	8.7	118
54	Differentially regulated GPVI ectodomain shedding by multiple platelet–expressed proteinases. Blood, 2010, 116, 3347-3355.	1.4	116

#	Article	IF	CITATIONS
55	Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets. Blood, 2010, 115, 3364-3373.	1.4	114
56	Only severe thrombocytopenia results in bleeding and defective thrombus formation in mice. Blood, 2013, 121, 4938-4947.	1.4	114
57	Impact of glycoprotein VI and platelet adhesion on atherosclerosis—A possible role of fibronectin. Journal of Molecular and Cellular Cardiology, 2010, 49, 532-542.	1.9	107
58	STIM1 is essential for $Fc\hat{l}^3$ receptor activation and autoimmune inflammation. Blood, 2009, 113, 1097-1104.	1.4	105
59	Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nature Communications, 2017, 8, 127.	12.8	104
60	Anti–Glycoprotein VI Treatment Severely Compromises Hemostasis in Mice With Reduced α2β1Levels or Concomitant Aspirin Therapy. Circulation, 2004, 110, 2946-2951.	1.6	102
61	Rac1 is essential for phospholipase $C \cdot \hat{l}^3 2$ activation in platelets. Pflugers Archiv European Journal of Physiology, 2009, 457, 1173-1185.	2.8	102
62	Costimulation of Gi- and G12/G13-mediated Signaling Pathways Induces Integrin \hat{l} ±IIb \hat{l} 23 Activation in Platelets. Journal of Biological Chemistry, 2002, 277, 39493-39498.	3.4	100
63	Roles of Platelet STIM1 and Orai1 in Glycoprotein VI- and Thrombin-dependent Procoagulant Activity and Thrombus Formation. Journal of Biological Chemistry, 2010, 285, 23629-23638.	3.4	100
64	Deficiency of the Tetraspanin CD63 Associated with Kidney Pathology but Normal Lysosomal Function. Molecular and Cellular Biology, 2009, 29, 1083-1094.	2.3	99
65	Evidence for a Role of ADAM17 (TACE) in the Regulation of Platelet Glycoprotein V. Journal of Biological Chemistry, 2005, 280, 14462-14468.	3.4	97
66	Stromal Interaction Molecules 1 and 2 Are Key Regulators of Autoreactive T Cell Activation in Murine Autoimmune Central Nervous System Inflammation. Journal of Immunology, 2010, 184, 1536-1542.	0.8	96
67	Engagement of \hat{l} ±llb \hat{l} 23 (GPllb/IIIa) with \hat{l} ± \hat{l} 1/2 \hat{l} 23 Integrin Mediates Interaction of Melanoma Cells with Platelets. Journal of Biological Chemistry, 2012, 287, 2168-2178.	3.4	95
68	Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42. Blood, 2013, 122, 3178-3187.	1.4	94
69	STIM1, STIM2, and Orai1 regulate storeâ€operated calcium entry and purinergic activation of microglia. Glia, 2015, 63, 652-663.	4.9	90
70	Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. Journal of Experimental Medicine, 2015, 212, 129-137.	8.5	87
71	Differential Regulation of Rho and Rac through Heterotrimeric G-proteins and Cyclic Nucleotides. Journal of Biological Chemistry, 2001, 276, 47906-47913.	3.4	86
72	Evidence for cross-talk between glycoprotein VI and Gi-coupled receptors during collagen-induced platelet aggregation. Blood, 2001, 97, 3829-3835.	1.4	86

#	Article	IF	CITATIONS
73	Absence of GPIbα is responsible for aberrant membrane development during megakaryocyte maturation. Experimental Hematology, 2002, 30, 352-360.	0.4	86
74	Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nature Communications, 2018, 9, 1523.	12.8	86
75	Relative antithrombotic effect of soluble GPVI dimer compared with anti-GPVI antibodies in mice. Blood, 2005, 105, 1492-1499.	1.4	85
76	Integrin $\hat{l}\pm$ ₆ \hat{l}^2 ₁ Is the Main Receptor for Vascular Laminins and Plays a Role in Platelet Adhesion, Activation, and Arterial Thrombosis. Circulation, 2013, 128, 541-552.	1.6	85
77	Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture. Nature Communications, 2016, 7, 11097.	12.8	84
78	Cholesterol loss during glutamate-mediated excitotoxicity. EMBO Journal, 2012, 31, 1764-1773.	7.8	83
79	The Glycoprotein VI-Phospholipase \hat{Cl}^32 Signaling Pathway Controls Thrombus Formation Induced by Collagen and Tissue Factor In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2673-2678.	2.4	82
80	Store-operated Ca2+ entry in platelets occurs independently of transient receptor potential (TRP) C1. Pflugers Archiv European Journal of Physiology, 2008, 457, 377-387.	2.8	81
81	Megakaryocyte-specific Profilin1-deficiency alters microtubule stability and causes a Wiskott–Aldrich syndrome-like platelet defect. Nature Communications, 2014, 5, 4746.	12.8	81
82	C1-Inhibitor Protects From Brain Ischemia-Reperfusion Injury by Combined Antiinflammatory and Antithrombotic Mechanisms. Stroke, 2012, 43, 2457-2467.	2.0	80
83	GPVI down-regulation in murine platelets through metalloproteinase-dependent shedding. Thrombosis and Haemostasis, 2004, 91, 951-958.	3.4	79
84	Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation. Annals of Neurology, 2015, 77, 784-803.	5.3	78
85	STIM and Orai in platelet function. Cell Calcium, 2011, 50, 270-278.	2.4	77
86	The dimeric platelet collagen receptor GPVI-Fc reduces platelet adhesion to activated endothelium and preserves myocardial function after transient ischemia in mice. American Journal of Physiology - Cell Physiology, 2012, 303, C757-C766.	4.6	77
87	Rhodocytin (Aggretin) Activates Platelets Lacking α2β1 Integrin, Glycoprotein VI, and the Ligand-binding Domain of Glycoprotein Ibα. Journal of Biological Chemistry, 2001, 276, 25121-25126.	3.4	76
88	Combating innate inflammation: a new paradigm for acute treatment of stroke?. Annals of the New York Academy of Sciences, 2010, 1207, 149-154.	3.8	76
89	Inhibition of Platelet GPlbî \pm and Promotion of Melanoma Metastasis. Journal of Investigative Dermatology, 2010, 130, 576-586.	0.7	75
90	STIM1-Independent T Cell Development and Effector Function In Vivo. Journal of Immunology, 2009, 182, 3390-3397.	0.8	73

#	Article	IF	Citations
91	ADF/n-cofilin–dependent actin turnover determines platelet formation and sizing. Blood, 2010, 116, 1767-1775.	1.4	73
92	Rap1-GTP–interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood, 2015, 125, 219-222.	1.4	73
93	Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood, 2015, 125, 3769-3777.	1.4	7 3
94	Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived Galectin-3. Blood, 2020, 135, 1146-1160.	1.4	71
95	CEACAM1 negatively regulates platelet-collagen interactions and thrombus growth in vitro and in vivo. Blood, 2009, 113, 1818-1828.	1.4	70
96	Syk and Src Family Kinases Regulate C-type Lectin Receptor 2 (CLEC-2)-mediated Clustering of Podoplanin and Platelet Adhesion to Lymphatic Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 35695-35710.	3.4	70
97	Acute Systemic Reaction and Lung Alterations Induced by an Antiplatelet Integrin gpIIb/IIIa Antibody in Mice. Blood, 1999, 94, 684-693.	1.4	69
98	Platelets as Modulators of Cerebral Ischemia/Reperfusion Injury. Frontiers in Immunology, 2019, 10, 2505.	4.8	69
99	CD28 Superagonist-Mediated Boost of Regulatory T Cells Increases Thrombo-Inflammation and Ischemic Neurodegeneration during the Acute Phase of Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 6-10.	4.3	67
100	Mice Lacking the ITIM-Containing Receptor G6b-B Exhibit Macrothrombocytopenia and Aberrant Platelet Function. Science Signaling, 2012, 5, ra78.	3.6	65
101	Platelet-derived VWF is not essential for normal thrombosis and hemostasis but fosters ischemic stroke injury in mice. Blood, 2015, 126, 1715-1722.	1.4	65
102	Diverging signaling events control the pathway of GPVI down-regulation in vivo. Blood, 2007, 110, 529-535.	1.4	64
103	Binding of von Willebrand Factor to Collagen and Glycoprotein Ibα, But Not to Glycoprotein IIb/IIIa, Contributes to Ischemic Stroke in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1949-1951.	2.4	63
104	Reduced thrombus stability in mice lacking the α2A-adrenergic receptor. Blood, 2006, 108, 510-514.	1.4	62
105	The Novel Oral Syk Inhibitor, Bl1002494, Protects Mice From Arterial Thrombosis and Thromboinflammatory Brain Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1247-1253.	2.4	62
106	A Novel Viper Venom Metalloproteinase, Alborhagin, Is an Agonist at the Platelet Collagen Receptor GPVI. Journal of Biological Chemistry, 2001, 276, 28092-28097.	3.4	60
107	Pharmacological Inhibition of Phospholipase D Protects Mice From Occlusive Thrombus Formation and Ischemic Stroke—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2212-2217.	2.4	60
108	Inhibition of Platelet GPVI Protects Against Myocardial Ischemia–Reperfusion Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 629-635.	2.4	60

#	Article	IF	Citations
109	Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood, 2019, 133, 2696-2706.	1.4	58
110	Targeting of the collagen-binding site on glycoprotein VI is not essential for in vivo depletion of the receptor. Blood, 2003, 101, 3948-3952.	1.4	57
111	Platelet receptors as therapeutic targets: Past, present and future. Thrombosis and Haemostasis, 2017, 117, 1249-1257.	3.4	57
112	Unresponsiveness of Platelets Lacking Both $G\hat{l}_{\pm}q$ and $G\hat{l}_{\pm}13$. Journal of Biological Chemistry, 2004, 279, 45354-45359.	3.4	56
113	Aspirin Induces Platelet Receptor Shedding via ADAM17 (TACE). Journal of Biological Chemistry, 2005, 280, 39716-39722.	3.4	56
114	Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function. Cell Reports, 2016, 16, 2197-2207.	6.4	55
115	Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium, 2019, 77, 39-48.	2.4	55
116	Efficacy and Safety of Platelet Glycoprotein Receptor Blockade in Aged and Comorbid Mice With Acute Experimental Stroke. Stroke, 2015, 46, 3502-3506.	2.0	54
117	Platelet secretion is crucial to prevent bleeding in the ischemic brain but not in the inflamed skin or lung in mice. Blood, 2017, 129, 1702-1706.	1.4	54
118	Heterotrimeric G Protein Subunit GÎ $\pm q$ Is a Master Switch for GÎ 2 Î 3 -Mediated Calcium Mobilization by Gi-Coupled GPCRs. Molecular Cell, 2020, 80, 940-954.e6.	9.7	54
119	Survival protein anoctaminâ€6 controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage. FASEB Journal, 2016, 30, 727-737.	0.5	52
120	Blocking of platelet glycoprotein receptor Ib reduces "thrombo-inflammation―in mice with acute ischemic stroke. Journal of Neuroinflammation, 2017, 14, 18.	7.2	52
121	CD84 Links T Cell and Platelet Activity in Cerebral Thrombo-Inflammation in Acute Stroke. Circulation Research, 2020, 127, 1023-1035.	4.5	52
122	A Cdc42/RhoA regulatory circuit downstream of glycoprotein lb guides transendothelial platelet biogenesis. Nature Communications, 2017, 8, 15838.	12.8	50
123	The contribution of platelet glycoprotein receptors to inflammatory bleeding prevention is stimulus and organ dependent. Haematologica, 2018, 103, e256-e258.	3.5	50
124	Local Leukocyte Invasion during Hyperacute Human Ischemic Stroke. Annals of Neurology, 2020, 87, 466-479.	5.3	50
125	Blocking of Platelets or Intrinsic Coagulation Pathway–Driven Thrombosis Does Not Prevent Cerebral Infarctions Induced by Photothrombosis. Stroke, 2008, 39, 1262-1268.	2.0	48
126	Two-Phase Antithrombotic Protection After Anti-Glycoprotein VI Treatment in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1640-1647.	2.4	47

#	Article	IF	CITATIONS
127	Differential effects of reduced glycoprotein VI levels on activation of murine platelets by glycoprotein VI ligands. Biochemical Journal, 2002, 368, 293-300.	3.7	45
128	TMEM16F-Mediated Platelet Membrane Phospholipid Scrambling Is Critical for Hemostasis and Thrombosis but not Thromboinflammation in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2152-2157.	2.4	45
129	Targeting Glycoprotein VI and the Immunoreceptor Tyrosine-Based Activation Motif Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1615-1620.	2.4	44
130	GPVI and Thromboxane Receptor on Platelets Promote Proinflammatory Macrophage Phenotypes during CutaneousÂInflammation. Journal of Investigative Dermatology, 2017, 137, 686-695.	0.7	44
131	STIM and Orai in hemostasis and thrombosis. Frontiers in Bioscience - Landmark, 2011, 16, 2144.	3.0	42
132	TRPM7 Kinase Controls Calcium Responses in Arterial Thrombosis and Stroke in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 344-352.	2.4	42
133	Genetic variation responsible for mouse strain differences in integrin $\hat{l}\pm 2$ expression is associated with altered platelet responses to collagen. Blood, 2004, 103, 3396-3402.	1.4	41
134	CLEC-2 contributes to hemostasis independently of classical hemITAM signaling in mice. Blood, 2017, 130, 2224-2228.	1.4	41
135	Antithrombotic Potential of Blockers of Store-Operated Calcium Channels in Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1717-1723.	2.4	40
136	${\rm CK2\hat{l}^2}$ regulates thrombopoiesis and Ca2+-triggered platelet activation in arterial thrombosis. Blood, 2017, 130, 2774-2785.	1.4	40
137	Red blood cell-derived semaphorin 7A promotes thrombo-inflammation in myocardial ischemia-reperfusion injury through platelet GPIb. Nature Communications, 2020, 11, 1315.	12.8	39
138	The expression of mouse CLECâ€⊋ on leucocyte subsets varies according to their anatomical location and inflammatory state. European Journal of Immunology, 2015, 45, 2484-2493.	2.9	38
139	Proplatelet formation is selectively inhibited by collagen type I via Syk-independent GPVI signaling. Journal of Cell Science, 2016, 129, 3473-84.	2.0	37
140	Evidence for Two Distinct Epitopes within Collagen for Activation of Murine Platelets. Journal of Biological Chemistry, 2001, 276, 364-368.	3.4	36
141	<scp>FXII</scp> a inhibitor <scp>rHA</scp> â€Infestinâ€4: Safe thromboprotection in experimental venous, arterial and foreign surfaceâ€induced thrombosis. British Journal of Haematology, 2016, 173, 769-778.	2.5	36
142	Congenital valvular defects associated with deleterious mutations in the PLD1 gene. Journal of Medical Genetics, 2017, 54, 278-286.	3.2	36
143	Neutrophil infiltration to the brain is plateletâ€dependent, and is reversed by blockade of platelet GPlb <i>î±</i> . Immunology, 2018, 154, 322-328.	4.4	36
144	Platelet G $\langle sub \rangle i \langle sub \rangle$ protein Gî $^{\pm}$ $\langle sub \rangle i2 \langle sub \rangle$ is an essential mediator of thrombo-inflammatory organ damage in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6491-6496.	7.1	35

#	Article	IF	Citations
145	Platelet lamellipodium formation is not required for thrombus formation and stability. Blood, 2019, 134, 2318-2329.	1.4	35
146	Role of murine integrin $\hat{l}\pm2\hat{l}^21$ in thrombus stabilization and embolization: Contribution of thromboxane A2. Thrombosis and Haemostasis, 2007, 98, 1072-1080.	3.4	34
147	Targeted downregulation of platelet CLEC-2 occurs through Syk-independent internalization. Blood, 2015, 125, 4069-4077.	1.4	34
148	Altered BCR signalling quality predisposes to autoimmune disease and a pre-diabetic state. EMBO Journal, 2012, 31, 3363-3374.	7.8	33
149	Impaired brain development and reduced cognitive function in phospholipase D-deficient mice. Neuroscience Letters, 2014, 572, 48-52.	2.1	33
150	Loss of Orai2-Mediated Capacitative Ca ²⁺ Entry Is Neuroprotective in Acute Ischemic Stroke, 2019, 50, 3238-3245.	2.0	33
151	Twinfilin 2a regulates platelet reactivity and turnover in mice. Blood, 2017, 130, 1746-1756.	1.4	33
152	ADAP deficiency impairs megakaryocyte polarization with ectopic proplatelet release and causes microthrombocytopenia. Blood, 2018, 132, 635-646.	1.4	32
153	Antibody-mediated inhibition of FXIIa blocks downstream bradykinin generation. Journal of Allergy and Clinical Immunology, 2018, 142, 1355-1358.	2.9	31
154	Critical Role of Platelet Glycoprotein $Ib\hat{l}_{\pm}$ in Arterial Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 589-597.	2.4	30
155	Sustained Reperfusion after Blockade of Glycoprotein-Receptor-Ib in Focal Cerebral Ischemia: An MRI Study at 17.6 Tesla. PLoS ONE, 2011, 6, e18386.	2.5	29
156	Phospholipase D1 mediates lymphocyte adhesion and migration in experimental autoimmune encephalomyelitis. European Journal of Immunology, 2014, 44, 2295-2305.	2.9	28
157	Targeting coagulation factor XII as a novel therapeutic option in brain trauma. Annals of Neurology, 2016, 79, 970-982.	5.3	28
158	Effects of Estrogen Replacement Therapies on Mouse Platelet Function and Glycoprotein VI Levels. Circulation Research, 2005, 97, 415-417.	4.5	27
159	PLD1 participates in BDNF-induced signalling in cortical neurons. Scientific Reports, 2015, 5, 14778.	3.3	27
160	SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice. Blood, 2015, 125, 185-194.	1.4	27
161	Von Willebrand Factor Regulation in Patients with Acute and Chronic Cerebrovascular Disease: A Pilot, Case–Control Study. PLoS ONE, 2014, 9, e99851.	2.5	27
162	Analysis of the role of von Willebrand factor, platelet glycoprotein VI-, and $\hat{1}\pm2\hat{1}^2$ 1-mediated collagen binding in thrombus formation. Blood, 2014, 124, 1799-1807.	1.4	26

#	Article	IF	Citations
163	Orai1 controls C5aâ€induced neutrophil recruitment in inflammation. European Journal of Immunology, 2015, 45, 2143-2153.	2.9	26
164	Different DOACs Control Inflammation in Cardiac Ischemia-Reperfusion Differently. Circulation Research, 2021, 128, 513-529.	4.5	26
165	Model systems for platelet receptor shedding. Platelets, 2017, 28, 325-332.	2.3	25
166	Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice. PLoS ONE, 2016, 11, e0147664.	2.5	25
167	Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight. PLoS ONE, 2016, 11, e0157607.	2.5	25
168	Targeting Platelet GPVI Plus rt-PA Administration but Not $\hat{l}\pm2\hat{l}^21$ -Mediated Collagen Binding Protects against Ischemic Brain Damage in Mice. International Journal of Molecular Sciences, 2019, 20, 2019.	4.1	24
169	Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration. Molecular Biology of the Cell, 2015, 26, 506-517.	2.1	23
170	CLP36 Is a Negative Regulator of Glycoprotein VI Signaling in Platelets. Circulation Research, 2012, 111, 1410-1420.	4.5	22
171	Cooperative and alternate functions for STIM1 and STIM2 in macrophage activation and in the context of inflammation. Immunity, Inflammation and Disease, 2015, 3, 154-170.	2.7	22
172	Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis. Blood, 2019, 134, 1847-1858.	1.4	22
173	Platelets in Thrombo-Inflammation: Concepts, Mechanisms, and Therapeutic Strategies for Ischemic Stroke. Hamostaseologie, 2020, 40, 153-164.	1.9	22
174	Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation. Platelets, 2017, 28, 629-642.	2.3	21
175	Facilitating roles of murine platelet glycoprotein Ib and $\hat{l}\pm IIb\hat{l}^23$ in phosphatidylserine exposure during vWF-collagen-induced thrombus formation. Journal of Physiology, 2004, 558, 403-415.	2.9	20
176	The <i>Nbeal2 < $^2/\hat{a}^2 < \sup mouse as a model for the gray platelet syndrome. Rare Diseases (Austin, Tex), 2013, 1, e26561.$</i>	1.8	20
177	Defective Zn2+ homeostasis in mouse and human platelets with \hat{l}_{\pm} - and \hat{l} -storage pool diseases. Scientific Reports, 2019, 9, 8333.	3.3	20
178	BIN2 orchestrates platelet calcium signaling in thrombosis and thrombo-inflammation. Journal of Clinical Investigation, 2020, 130, 6064-6079.	8.2	20
179	Flow-Cytometric Analysis of Mouse Platelet Function. , 2004, 272, 255-268.		19
180	Platelets are relevant mediators of renal injury induced by primary endothelial lesions. American Journal of Physiology - Renal Physiology, 2015, 308, F1238-F1246.	2.7	19

#	Article	IF	Citations
181	Evidence that GPVI is Expressed as a Mixture of Monomers and Dimers, and that the D2 Domain is not Essential for GPVI Activation. Thrombosis and Haemostasis, 2021, 121, 1435-1447.	3.4	19
182	Platelet Activation and Chemokine Release Are Related to Local Neutrophil-Dominant Inflammation During Hyperacute Human Stroke. Translational Stroke Research, 2022, 13, 364-369.	4.2	19
183	Growth Factor Receptor–Bound Protein 2 Contributes to (Hem)Immunoreceptor Tyrosine-Based Activation Motif–Mediated Signaling in Platelets. Circulation Research, 2014, 114, 444-453.	4.5	18
184	GPVI signaling is compromised in newly formed platelets after acute thrombocytopenia in mice. Blood, 2018, 131, 1106-1110.	1.4	18
185	Actin/microtubule crosstalk during platelet biogenesis in mice is critically regulated by Twinfilin1 and Cofilin1. Blood Advances, 2020, 4, 2124-2134.	5.2	18
186	Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice. Journal of Neuroinflammation, 2021, 18, 46.	7.2	18
187	Acquired platelet GPVI receptor dysfunction in critically ill patients with sepsis. Blood, 2021, 137, 3105-3115.	1.4	18
188	Glenzocimab does not impact glycoprotein VI-dependent inflammatory hemostasis. Haematologica, 2021, 106, 2000-2003.	3.5	18
189	Foudroyant cerebral venous (sinus) thrombosis triggered through CLEC-2 and GPIIb/IIIa dependent platelet activation., 2022, 1, 132-141.		18
190	Targeting of platelet integrin alphallbbeta3 determines systemic reaction and bleeding in murine thrombocytopenia regulated by activating and inhibitory FcgammaR. International Immunology, 2003, 15, 341-349.	4.0	17
191	Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Current Biology, 2021, 31, 2051-2064.e8.	3.9	17
192	Altered microtubule equilibrium and impaired thrombus stability in mice lacking RanBP10. Blood, 2012, 120, 3594-3602.	1.4	16
193	Lymphatic blood filling in CLEC-2-deficient mouse models. Platelets, 2021, 32, 352-367.	2.3	16
194	ANXA7 Regulates Platelet Lipid Metabolism and Ca ²⁺ Release in Arterial Thrombosis. Circulation Research, 2021, 129, 494-507.	4.5	16
195	Temporal Roles of Platelet and Coagulation Pathways in Collagen- and Tissue Factor-Induced Thrombus Formation. International Journal of Molecular Sciences, 2022, 23, 358.	4.1	16
196	The Neurobeachin-like 2 Protein Regulates Mast Cell Homeostasis. Journal of Immunology, 2017, 199, 2948-2957.	0.8	15
197	Interspecies differences in protein expression do not impact the spatiotemporal regulation of glycoprotein VI mediated activation. Journal of Thrombosis and Haemostasis, 2020, 18, 485-496.	3.8	14
198	Mice Lacking the SLAM Family Member CD84 Display Unaltered Platelet Function in Hemostasis and Thrombosis. PLoS ONE, 2014, 9, e115306.	2.5	14

#	Article	IF	Citations
199	RhoA/Cdc42 signaling drives cytoplasmic maturation but not endomitosis in megakaryocytes. Cell Reports, 2021, 35, 109102.	6.4	13
200	Both G protein–coupled and immunoreceptor tyrosine-based activation motif receptors mediate venous thrombosis in mice. Blood, 2022, 139, 3194-3203.	1.4	13
201	Influence of Thrombolysis on the Safety and Efficacy of Blocking Platelet Adhesion or Secretory Activity in Acute Ischemic Stroke in Mice. Translational Stroke Research, 2018, 9, 493-498.	4.2	12
202	Profilin 1–mediated cytoskeletal rearrangements regulate integrin function in mouse platelets. Blood Advances, 2018, 2, 1040-1045.	5.2	12
203	Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis. Frontiers in Cardiovascular Medicine, 2019, 6, 99.	2.4	12
204	How is the formation of microthrombi after traumatic brain injury linked to inflammation?. Journal of Neuroimmunology, 2019, 326, 9-13.	2.3	12
205	Comparison of the central human and mouse platelet signaling cascade by systems biological analysis. BMC Genomics, 2020, 21, 897.	2.8	12
206	Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells. Oncotarget, 2015, 6, 5354-5368.	1.8	12
207	The smaller, the better: VWF in stroke. Blood, 2010, 115, 1477-1478.	1.4	11
208	Megakaryocyte rupture for acute platelet needs. Journal of Cell Biology, 2015, 209, 327-328.	5.2	11
209	G6b-B regulates an essential step in megakaryocyte maturation. Blood Advances, 2022, 6, 3155-3161.	5.2	11
210	Platelets drive fibronectin fibrillogenesis using integrin αIIbβ3. Science Advances, 2022, 8, eabj8331.	10.3	11
211	Targeting platelet glycoprotein VI attenuates progressive ischemic brain damage before recanalization during middle cerebral artery occlusion in mice. Experimental Neurology, 2021, 344, 113804.	4.1	10
212	FcÎ ³ RIIB on liver sinusoidal endothelial cells is essential for antibody-induced GPVI ectodomain shedding in mice. Blood, 2016, 128, 862-865.	1.4	9
213	Genetic platelet depletion is superior in platelet transfusion compared to current models. Haematologica, 2020, 105, 1738-1749.	3.5	9
214	Thymosin \hat{l}^24 is essential for thrombus formation by controlling the G-actin/F-actin equilibrium in platelets. Haematologica, 2022, 107, 2846-2858.	3.5	9
215	Infarct growth precedes cerebral thrombosis following experimental stroke in mice. Scientific Reports, 2021, 11, 22887.	3.3	9
216	Coactosin-like 1 integrates signaling critical for shear-dependent thrombus formation in mouse platelets. Haematologica, 2020, 105, 1667-1676.	3.5	8

#	Article	IF	Citations
217	CRLF3 plays a key role in the final stage of platelet genesis and is a potential therapeutic target for thrombocythemia. Blood, 2022, 139, 2227-2239.	1.4	8
218	Differential regulation of the platelet GPIbâ€iX complex by antiâ€GPIbβ antibodies. Journal of Thrombosis and Haemostasis, 2021, 19, 2044-2055.	3.8	7
219	The Platelet Collagen Receptor GPVI Is Cleaved by Tspan15/ADAM10 and Tspan33/ADAM10 Molecular Scissors. International Journal of Molecular Sciences, 2022, 23, 2440.	4.1	7
220	Activated Platelets Upregulate β2 Integrin Mac-1 (CD11b/CD18) on Dendritic Cells, Which Mediates Heterotypic Cell–Cell Interaction. Journal of Immunology, 2022, 208, 1729-1741.	0.8	7
221	The Adaptor Protein Swiprosin-1/EFhd2 Is Dispensable for Platelet Function in Mice. PLoS ONE, 2014, 9, e107139.	2.5	6
222	Microvesicles, but not platelets, bud off from mouse bone marrow megakaryocytes. Blood, 2021, 138, 1998-2001.	1.4	6
223	Rasa3 deficiency minimally affects thrombopoiesis but promotes severe thrombocytopenia due to integrin-dependent platelet clearance. JCI Insight, 2022, 7, .	5.0	6
224	Phospholipase D1 is involved in αâ€adrenergic contraction of murine vascular smooth muscle. FASEB Journal, 2014, 28, 1044-1048.	0.5	5
225	Identification of a Clinically Relevant Signature for Early Progression in KRAS-Driven Lung Adenocarcinoma. Cancers, 2019, 11, 600.	3.7	5
226	An intravascular perspective on hyper-acute neutrophil, T-cell and platelet responses: Similarities between human and experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1561-1567.	4.3	5
227	Transdermal $17\cdot\hat{l}^2$ estradiol replacement therapy reduces megakaryocyte GPVI expression. Thrombosis Research, 2008, 123, 93-99.	1.7	4
228	Size does matter: VWF in MI. Blood, 2012, 120, 5096-5097.	1.4	4
229	Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5). PLoS ONE, 2015, 10, e0133429.	2.5	4
230	Differential Role of Glycoprotein VI in Mouse and Human Thrombus Progression and Stability. Thrombosis and Haemostasis, 2021, 121, 543-546.	3.4	4
231	Confocal Real-Time Analysis of Cutaneous Platelet Recruitment during Immune Complexâ€'Mediated Inflammation. Journal of Investigative Dermatology, 2022, 142, 2724-2732.e3.	0.7	4
232	Dividing VI by X(a). Blood, 2011, 117, 3704-3705.	1.4	3
233	Sugar rush bleeds the brain. Nature Medicine, 2011, 17, 161-162.	30.7	3
234	Better Safe Than Sorry. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 552-553.	2.4	3

#	Article	IF	CITATIONS
235	(Dis)solving the stroke problem by vWF inhibition?. Blood, 2013, 121, 4972-4974.	1.4	3
236	Platelets in Acute Ischemic Stroke., 2017,, 1029-1041.		3
237	Mapping densely packed \hat{l} ±llb \hat{l}^2 3 receptors in murine blood platelets with expansion microscopy. Platelets, 2022, 33, 849-858.	2.3	3
238	Rac Inhibition Causes Impaired GPVI Signalling in Human Platelets through GPVI Shedding and Reduction in PLCÎ ³ 2 Phosphorylation. International Journal of Molecular Sciences, 2022, 23, 3746.	4.1	3
239	Platelets guide lymphocytes to vascular injury sites. Thrombosis and Haemostasis, 2012, 108, 207-207.	3.4	2
240	RhoA/ROCK guides NMII on the way to MK polyploidy. Blood, 2016, 128, 3025-3026.	1.4	2
241	Novel Approaches to Unravel Risk Factors and Mechanisms of Venous Thrombosis. Thrombosis and Haemostasis, 2020, 120, 372-372.	3.4	2
242	Impaired microtubule dynamics contribute to microthrombocytopenia in RhoB-deficient mice. Blood Advances, 2022, 6, 5184-5197.	5.2	2
243	Platelets and Stroke. Cardiac and Vascular Biology, 2017, , 253-274.	0.2	1
244	Critical redundant functions of the adapters Grb2 and Gads in platelet (hem)ITAM signaling in mice. Platelets, 2020, 31, 801-811.	2.3	1
245	Generation of a humanized FXII knockâ€in mouse—A powerful model system to test novel antiâ€thrombotic agents. Journal of Thrombosis and Haemostasis, 2021, 19, 2835-2840.	3.8	1
246	Heterotrimeric G Protein Subunit GÎ $\pm q$ is a Master Switch for GÎ 2 Î 3 -Mediated Calcium Mobilization by Gi-Coupled GPCRs. SSRN Electronic Journal, 0, , .	0.4	1
247	Feasibility of platelet marker analysis in ischemic stroke patients and their association with one-year outcome. A pilot project within a subsample of the Stroke Induced Cardiac Failure in Mice and Men (SICFAIL) cohort study. Platelets, 2021, , 1-9.	2.3	1
248	Platelets in Ischemic Stroke. , 2016, , 293-306.		0
249	XPoRting (poly)phosphates limits thrombosis. Blood, 2021, 137, 1278-1280.	1.4	0
250	Distinctive Efficacy of IVIG in Ameliorating Thrombocytopenia Induced by Anti-Platelet GPIIbIIIa and GPIbα Antibodies Blood, 2004, 104, 2076-2076.	1.4	0
251	Immune Thrombocytopenia Mediated by Anti-GPIbî± Antibodies May Occur Via an FcR-Independent Pathway: A Potential Explanation for Refractory Cases to IVIG Therapy Blood, 2005, 106, 217-217.	1.4	0
252	Aberrant Microtubule Organization and Wiskott-Aldrich Syndrome-like Defects in Platelets and Megakaryocytes of Profilin1-Deficient Mice. Blood, 2014, 124, 4200-4200.	1.4	0

#	Article	IF	CITATIONS
253	Megakaryocyte rupture for acute platelet needs. Journal of Experimental Medicine, 2015, 212, 2125OIA24.	8.5	O
254	Mouse Models for Platelet Production and Function., 2016,, 239-263.		0
255	Mouse Models of Thrombosis. , 2017, , 681-698.		O