Takato Takenouchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7876746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α-Synuclein Promotes Mitochondrial Deficit and Oxidative Stress. American Journal of Pathology, 2000, 157, 401-410.	3.8	641
2	Inhibitory effects of U73122 and U73343 on Ca influx and pore formation induced by the activation of P2X7 nucleotide receptors in mouse microglial cell line. Biochimica Et Biophysica Acta - General Subjects, 2005, 1726, 177-186.	2.4	110
3	γ-Irradiation induces P2X7 receptor-dependent ATP release from B16 melanoma cells. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 40-46.	2.4	89
4	A β-synuclein mutation linked to dementia produces neurodegeneration when expressed in mouse brain. Nature Communications, 2010, 1, 110.	12.8	67
5	Stress-induced microglial activation occurs through β-adrenergic receptor: noradrenaline as a key neurotransmitter in microglial activation. Journal of Neuroinflammation, 2019, 16, 266.	7.2	54
6	Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1β, HMCB1, and PGE2, decreased MHC class I expression and necrotic cell death. Biochemical and Biophysical Research Communications, 2015, 458, 771-776.	2.1	46
7	Purinergic signaling via P2X7 receptor mediates IL- $1\hat{l}^2$ production in Kupffer cells exposed to silica nanoparticle. Toxicology, 2014, 321, 13-20.	4.2	42
8	Evolvability and Neurodegenerative Disease: Antagonistic Pleiotropy Phenomena Derived from Amyloid Aggregates. Journal of Parkinson's Disease, 2018, 8, 405-408.	2.8	25
9	Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain. Results in Immunology, 2014, 4, 68-74.	2.2	24
10	Evolvability of Amyloidogenic Proteins in Human Brain. Journal of Alzheimer's Disease, 2018, 62, 73-83.	2.6	23
11	Adiponectin Paradox in Alzheimer's Disease; Relevance to Amyloidogenic Evolvability?. Frontiers in Endocrinology, 2020, 11, 108.	3.5	22
12	Immortalization and Characterization of Porcine Macrophages That Had Been Transduced with Lentiviral Vectors Encoding the SV40 Large T Antigen and Porcine Telomerase Reverse Transcriptase. Frontiers in Veterinary Science, 2017, 4, 132.	2.2	20
13	Combined immunotherapy with "anti-insulin resistance―therapy as a novel therapeutic strategy against neurodegenerative diseases. Npj Parkinson's Disease, 2017, 3, 4.	5.3	19
14	Transgenerational Interaction of Alzheimer's Disease with Schizophrenia through Amyloid Evolvability. Journal of Alzheimer's Disease, 2019, 68, 473-481.	2.6	15
15	Motor and Nonmotor Symptoms of Parkinson's Disease: Antagonistic Pleiotropy Phenomena Derived from α-Synuclein Evolvability?. Parkinson's Disease, 2018, 2018, 1-6.	1.1	14
16	Dual-therapy strategy for modification of adiponectin receptor signaling in aging-associated chronic diseases. Drug Discovery Today, 2018, 23, 1305-1311.	6.4	13
17	Pig lacks functional NLRC4 and NAIP genes. Immunogenetics, 2017, 69, 125-130.	2.4	9
18	Adiponectin Paradox as a Therapeutic Target in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 76, 1249-1253.	2.6	9

Τακατό Τακενους Ηι

#	Article	IF	CITATIONS
19	Dexamethasone enhances CD163 expression in porcine IPKM immortalized macrophages. In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 10-16.	1.5	9
20	Possible Role of Amyloid Cross-Seeding in Evolvability and Neurodegenerative Disease. Journal of Parkinson's Disease, 2019, 9, 793-802.	2.8	8
21	Possible Role of Activin in the Adiponectin Paradox-Induced Progress of Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 81, 451-458.	2.6	7
22	Possible Role of the Polyglutamine Elongation in Evolution of Amyloid-Related Evolvability. Journal of Huntington's Disease, 2018, 7, 297-307.	1.9	6
23	Diversity of Mitochondrial Pathology in a Mouse Model of Axonal Degeneration in Synucleinopathies. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-6.	4.0	4
24	Understanding Creutzfeldt-Jackob disease from a viewpoint of amyloidogenic evolvability. Prion, 2020, 14, 1-8.	1.8	4
25	Mesencephalic astrocyte-derived neurotrophic factor is a novel radioresistance factor in mouse B16 melanoma. Biochemical and Biophysical Research Communications, 2020, 524, 869-875.	2.1	3
26	Susceptibility of immortalized porcine kidney macrophages to porcine reproductive and respiratory syndrome virus-2 infection. Journal of Virological Methods, 2021, 288, 114026.	2.1	3
27	Current and future clinical utilities of Parkinson's disease and dementia biomarkers: can they help us conquer the disease?. Expert Review of Neurotherapeutics, 2019, 19, 1149-1161.	2.8	2
28	Connecting Alzheimer's Disease With Diabetes Mellitus Through Amyloidogenic Evolvability. Frontiers in Aging Neuroscience, 2020, 12, 576192.	3.4	2