Terje Johansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7875837/publications.pdf

Version: 2024-02-01

7511 9775 41,095 156 73 151 citations h-index g-index papers 164 164 164 42598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploring selective autophagy in Drosophila: Methods to identify Atg8-interacting proteins. Methods in Cell Biology, 2021, 165, 13-29.	0.5	O
2	SIRT1 – a new mammalian substrate of nuclear autophagy. Autophagy, 2021, 17, 593-595.	4.3	56
3	The immunophilin <scp>Zonda</scp> controls regulated exocytosis in endocrine and exocrine tissues. Traffic, 2021, 22, 111-122.	1.3	1
4	Regulation of Golgi turnover by CALCOCO1-mediated selective autophagy. Journal of Cell Biology, 2021, 220, .	2.3	35
5	SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. Journal of Cell Biology, 2021, 220, .	2.3	39
6	The soluble reticulophagy receptor CALCOCO1 is also a Golgiphagy receptor. Autophagy, 2021, 17, 2051-2052.	4.3	8
7	Phosphorylation of the LIR Domain of SCOC Modulates ATG8 Binding Affinity and Specificity. Journal of Molecular Biology, 2021, 433, 166987.	2.0	14
8	Mechanisms of Selective Autophagy. Annual Review of Cell and Developmental Biology, 2021, 37, 143-169.	4.0	137
9	SAMM50 is a receptor for basal piecemeal mitophagy and acts with SQSTM1/p62 in OXPHOS-induced mitophagy. Autophagy, 2021, 17, 2656-2658.	4.3	3
10	ATG9A protects the plasma membrane from programmed and incidental permeabilization. Nature Cell Biology, 2021, 23, 846-858.	4.6	43
11	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	3.5	615
12	Autophagy in healthy aging and disease. Nature Aging, 2021, 1, 634-650.	5.3	467
13	Degradation of arouser by endosomal microautophagy is essential for adaptation to starvation in. Life Science Alliance, 2021, 4, .	1.3	2
14	Degradation of arouser by endosomal microautophagy is essential for adaptation to starvation in <i>Drosophila</i> . Life Science Alliance, 2021, 4, e202000965.	1.3	6
15	Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. Journal of Molecular Biology, 2020, 432, 80-103.	2.0	446
16	NIMA-related kinase 9–mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1. Journal of Biological Chemistry, 2020, 295, 1240-1260.	1.6	19
17	SIRT1 is downregulated by autophagy in senescence and ageing. Nature Cell Biology, 2020, 22, 1170-1179.	4.6	236
18	CALCOCO1 is a soluble reticulophagy receptor. Autophagy, 2020, 16, 1729-1731.	4.3	9

#	Article	lF	Citations
19	Regulation of Expression of Autophagy Genes by Atg8a-Interacting Partners Sequoia, YL-1, and Sir2 in Drosophila. Cell Reports, 2020, 31, 107695.	2.9	19
20	Structural basis of p62/SQSTM1 helical filaments and their role in cellular cargo uptake. Nature Communications, 2020, 11, 440.	5.8	71
21	NIMA-related kinase 9–mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1. Journal of Biological Chemistry, 2020, 295, 1240-1260.	1.6	14
22	Autophagy and endocytosis – interconnections and interdependencies. Journal of Cell Science, 2020, 133, .	1.2	83
23	<scp>CALCOCO</scp> 1 acts with <scp>VAMP</scp> â€associated proteins to mediate <scp>ER</scp> â€phagy. EMBO Journal, 2020, 39, e103649.	3.5	86
24	Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy, 2019, 15, 169-171.	4.3	112
25	NIPSNAP1 and NIPSNAP2 act as "eat me―signals to allow sustained recruitment of autophagy receptors during mitophagy. Autophagy, 2019, 15, 1845-1847.	4.3	35
26	TRIM32 acts both as a substrate and a positive regulator of p62/SQSTM1 impaired in a muscular dystrophy disease. Journal of Cell Science, 2019, 132, .	1.2	14
27	SQSTM-1/p62 potentiates HTLV-1 Tax-mediated NF-κB activation through its ubiquitin binding function. Scientific Reports, 2019, 9, 16014.	1.6	15
28	Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through <scp>SNARE</scp> s. EMBO Journal, 2019, 38, e101994.	3.5	37
29	TAK 1 converts Sequestosome 1/p62 from an autophagy receptor to a signaling platform. EMBO Reports, 2019, 20, e46238.	2.0	24
30	Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene, 2019, 38, 7473-7490.	2.6	61
31	Autophagy, Inflammation, and Metabolism (AIM) Center in its second year. Autophagy, 2019, 15, 1829-1833.	4.3	0
32	Selective Autophagy: RNA Comes from the Vault toÂRegulate p62/SQSTM1. Current Biology, 2019, 29, R297-R299.	1.8	3
33	Molecular determinants regulating selective binding of autophagy adapters and receptors to ATG8 proteins. Nature Communications, 2019, 10, 2055.	5.8	118
34	The FMRpolyGlycine Protein Mediates Aggregate Formation and Toxicity Independent of the CGG mRNA Hairpin in a Cellular Model for FXTAS. Frontiers in Genetics, 2019, 10, 249.	1.1	18
35	NIPSNAP1 and NIPSNAP2 Act as "Eat Me―Signals for Mitophagy. Developmental Cell, 2019, 49, 509-525.e1	2.3.1	104
36	Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs. Autophagy, 2019, 15, 1333-1355.	4.3	86

#	Article	IF	Citations
37	Phosphorylation of Syntaxin 17 by TBK1 Controls Autophagy Initiation. Developmental Cell, 2019, 49, 130-144.e6.	3.1	99
38	Bicaudal D1 impairs autophagosome maturation in chronic obstructive pulmonary disease. FASEB BioAdvances, 2019, 1, 688-705.	1.3	14
39	Use of Peptide Arrays for Identification and Characterization of LIR Motifs. Methods in Molecular Biology, 2019, 1880, 149-161.	0.4	8
40	Endosomal microautophagy is an integrated part of the autophagic response to amino acid starvation. Autophagy, 2019, 15, 182-183.	4.3	32
41	Galectins Control mTOR in Response to Endomembrane Damage. Molecular Cell, 2018, 70, 120-135.e8.	4.5	191
42	TRIM50 regulates Beclin 1 proautophagic activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 908-919.	1.9	39
43	Turnip Mosaic Virus Counteracts Selective Autophagy of the Viral Silencing Suppressor HCpro. Plant Physiology, 2018, 176, 649-662.	2.3	136
44	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	4.3	3
45	Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. Journal of Cell Biology, 2018, 217, 3640-3655.	2.3	213
46	TRIM-directed selective autophagy regulates immune activation. Autophagy, 2017, 13, 989-990.	4.3	86
47	Microenvironmental autophagy promotes tumour growth. Nature, 2017, 541, 417-420.	13.7	379
48	ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8. Autophagy, 2017, 13, 834-853.	4.3	84
49	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
50	Cellular and molecular mechanism for secretory autophagy. Autophagy, 2017, 13, 1084-1085.	4.3	71
51	Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy, 2017, 13, 1086-1087.	4.3	40
52	Conserved Atg8 recognition sites mediate Atg4 association with autophagosomal membranes and Atg8 deconjugation. EMBO Reports, 2017, 18, 765-780.	2.0	59
53	FKBP8 recruits LC3A to mediate Parkinâ€independent mitophagy. EMBO Reports, 2017, 18, 947-961.	2.0	295
54	Dedicated <scp>SNARE</scp> s and specialized <scp>TRIM</scp> cargo receptors mediate secretory autophagy. EMBO Journal, 2017, 36, 42-60.	3.5	247

#	Article	IF	CITATIONS
55	Kenny mediates selective autophagic degradation of the IKK complex to control innate immune responses. Nature Communications, 2017, 8, 1264.	5.8	50
56	Zonda is a novel early component of the autophagy pathway in <i>Drosophila</i> . Molecular Biology of the Cell, 2017, 28, 3070-3081.	0.9	17
57	Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays in Biochemistry, 2017, 61, 609-624.	2.1	490
58	SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy, 2016, 12, 1917-1930.	4.3	120
59	Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation. Journal of Biological Chemistry, 2016, 291, 9025-9041.	1.6	69
60	Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Autophagy, 2016, 12, 1094-1104.	4.3	123
61	TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. Developmental Cell, 2016, 39, 13-27.	3.1	339
62	TRIM17 contributes to autophagy of midbodies while actively sparing other targets from degradation. Journal of Cell Science, 2016, 129, 3562-3573.	1.2	40
63	Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2–JNK signalling in breast cancer. Nature Communications, 2016, 7, 10318.	5.8	85
64	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
65	Regulator of Chromosome Condensation 2 Identifies High-Risk Patients within Both Major Phenotypes of Colorectal Cancer. Clinical Cancer Research, 2015, 21, 3759-3770.	3.2	32
66	SQSTM1/p62 regulates the expression of junctional proteins through epithelial-mesenchymal transition factors. Cell Cycle, 2015, 14, 364-374.	1.3	57
67	p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB. Journal of Biological Chemistry, 2015, 290, 14945-14962.	1.6	61
68	The Selective Autophagy Receptor p62 Forms a Flexible Filamentous Helical Scaffold. Cell Reports, 2015, 11, 748-758.	2.9	190
69	HIV-1 viral infectivity factor interacts with microtubule-associated protein light chain 3 and inhibits autophagy. Aids, 2015, 29, 275-286.	1.0	50
70	Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth. Nature, 2015, 520, 234-238.	13.7	343
71	Autophagy mediates degradation of nuclear lamina. Nature, 2015, 527, 105-109.	13.7	510
72	FYCO1 Contains a C-terminally Extended, LC3A/B-preferring LC3-interacting Region (LIR) Motif Required for Efficient Maturation of Autophagosomes during Basal Autophagy. Journal of Biological Chemistry, 2015, 290, 29361-29374.	1.6	106

#	Article	IF	Citations
73	TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. Journal of Cell Biology, 2015, 210, 973-989.	2.3	248
74	The higher-order molecular organization of p62/SQSTM1. Oncotarget, 2015, 6, 16796-16797.	0.8	4
75	TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. Journal of Experimental Medicine, 2015, 212, 212100IA77.	4.2	0
76	iLIR. Autophagy, 2014, 10, 913-925.	4.3	187
77	TRIM proteins regulate autophagy: TRIM5 is a selective autophagy receptor mediating HIV-1 restriction. Autophagy, 2014, 10, 2387-2388.	4.3	64
78	p38MAPK-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2–antioxidant signaling. Free Radical Biology and Medicine, 2014, 67, 292-303.	1.3	55
79	Interactions between Autophagy Receptors and Ubiquitin-like Proteins Form the Molecular Basis for Selective Autophagy. Molecular Cell, 2014, 53, 167-178.	4.5	849
80	TRIM Proteins Regulate Autophagy and Can Target Autophagic Substrates by Direct Recognition. Developmental Cell, 2014, 30, 394-409.	3.1	269
81	Selective autophagy goes exclusive. Nature Cell Biology, 2014, 16, 395-397.	4.6	11
82	SPBP Is a Sulforaphane Induced Transcriptional Coactivator of NRF2 Regulating Expression of the Autophagy Receptor p62/SQSTM1. PLoS ONE, 2014, 9, e85262.	1.1	35
83	NBR1 acts as an autophagy receptor for peroxisomes. Journal of Cell Science, 2013, 126, 939-52.	1.2	274
84	The LIR motif – crucial for selective autophagy. Journal of Cell Science, 2013, 126, 3237-3247.	1.2	718
85	Selective autophagy. Essays in Biochemistry, 2013, 55, 79-92.	2.1	98
86	A Phylogenetic Study of SPBP and RAI1: Evolutionary Conservation of Chromatin Binding Modules. PLoS ONE, 2013, 8, e78907.	1.1	22
87	Aggrephagy: Selective Disposal of Protein Aggregates by Macroautophagy. International Journal of Cell Biology, 2012, 2012, 1-21.	1.0	363
88	CROSS-TALK BETWEEN THE UBIQUITIN-PROTEASOME SYSTEM AND MACROAUTOPHAGY. , 2012, , 59-85.		0
89	Identification of two independent nucleosome-binding domains in the transcriptional co-activator SPBP. Biochemical Journal, 2012, 442, 65-75.	1.7	28
90	ATG8 Family Proteins Act as Scaffolds for Assembly of the ULK Complex. Journal of Biological Chemistry, 2012, 287, 39275-39290.	1.6	257

#	Article	IF	CITATIONS
91	TBK-1 Promotes Autophagy-Mediated Antimicrobial Defense by Controlling Autophagosome Maturation. Immunity, 2012, 37, 223-234.	6.6	563
92	Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO Journal, 2012, 31, 1931-1946.	3.5	105
93	Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62. Cell Communication and Signaling, 2012, 10, 28.	2.7	50
94	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
95	The proteomic analysis of endogenous FAT10 substrates identifies p62/SQSTM1 as a substrate of FAT10ylation. Journal of Cell Science, 2012, 125, 4576-85.	1.2	67
96	DOR/Tp53inp2 and Tp53inp1 Constitute a Metazoan Gene Family Encoding Dual Regulators of Autophagy and Transcription. PLoS ONE, 2012, 7, e34034.	1.1	51
97	Pax6 Represses Androgen Receptor-Mediated Transactivation by Inhibiting Recruitment of the Coactivator SPBP. PLoS ONE, 2011, 6, e24659.	1.1	14
98	Transforming growth factor- \hat{l}^2 -inducible early response gene 1 is a novel substrate for atypical protein kinase Cs. Cellular and Molecular Life Sciences, 2011, 68, 1953-1968.	2.4	4
99	Following autophagy step by step. BMC Biology, 2011, 9, 39.	1.7	155
100	p62 and NDP52 Proteins Target Intracytosolic Shigella and Listeria to Different Autophagy Pathways. Journal of Biological Chemistry, 2011, 286, 26987-26995.	1.6	257
101	Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy, 2011, 7, 993-1010.	4.3	283
102	Selective autophagy mediated by autophagic adapter proteins. Autophagy, 2011, 7, 279-296.	4.3	1,512
103	Pax6 localizes to chromatin-rich territories and displays a slow nuclear mobility altered by disease mutations. Cellular and Molecular Life Sciences, 2010, 67, 4079-4094.	2.4	9
104	Delivery of Cytosolic Components by Autophagic Adaptor Protein p62 Endows Autophagosomes with Unique Antimicrobial Properties. Immunity, 2010, 32, 329-341.	6.6	276
105	Autophagy: links with the proteasome. Current Opinion in Cell Biology, 2010, 22, 192-198.	2.6	113
106	FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end–directed vesicle transport. Journal of Cell Biology, 2010, 188, 253-269.	2.3	573
107	p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy, 2010, 6, 330-344.	4.3	296
108	Selective Autophagy in Cancer Development and Therapy. Cancer Research, 2010, 70, 3431-3434.	0.4	196

#	Article	IF	Citations
109	Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late <i>Drosophila melanogaster</i> oogenesis. Journal of Cell Biology, 2010, 190, 523-531.	2.3	224
110	Autophagy as a trigger for cell death: Autophagic degradation of inhibitor of apoptosis dBruce controls DNA fragmentation during late oogenesis in Drosophila. Autophagy, 2010, 6, 1214-1215.	4.3	61
111	Nucleocytoplasmic Shuttling of p62/SQSTM1 and Its Role in Recruitment of Nuclear Polyubiquitinated Proteins to Promyelocytic Leukemia Bodies. Journal of Biological Chemistry, 2010, 285, 5941-5953.	1.6	200
112	FYCO1: Linking autophagosomes to microtubule plus end-directing molecular motors. Autophagy, 2010, 6, 550-552.	4.3	65
113	p62/SQSTM1 Is a Target Gene for Transcription Factor NRF2 and Creates a Positive Feedback Loop by Inducing Antioxidant Response Element-driven Gene Transcription. Journal of Biological Chemistry, 2010, 285, 22576-22591.	1.6	1,158
114	A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy, 2010, 6, 784-793.	4.3	138
115	Cell death during <i>Drosophila melanogaster </i> early oogenesis is mediated through autophagy. Autophagy, 2009, 5, 298-302.	4.3	124
116	NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle, 2009, 8, 1986-1990.	1.3	399
117	The Adaptor Protein p62/SQSTM1 Targets Invading Bacteria to the Autophagy Pathway. Journal of Immunology, 2009, 183, 5909-5916.	0.4	501
118	A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates. Molecular Cell, 2009, 33, 505-516.	4.5	974
119	Chapter 12 Monitoring Autophagic Degradation of p62/SQSTM1. Methods in Enzymology, 2009, 452, 181-197.	0.4	936
120	NBR1 co-operates with p62 in selective autophagy of ubiquitinated targets. Autophagy, 2009, 5, 732-733.	4.3	163
121	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
122	p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. Journal of Biological Chemistry, 2007, 282, 24131-24145.	1.6	3,766
123	The MH1 domain of Smad3 interacts with Pax6 and represses autoregulation of the Pax6 P1 promoter. Nucleic Acids Research, 2007, 35, 890-901.	6.5	44
124	The ePHD protein SPBP interacts with TopBP1 and together they co-operate to stimulate Ets1-mediated transcription. Nucleic Acids Research, 2007, 35, 6648-6662.	6.5	26
125	Gene symbol: APC. Human Genetics, 2007, 121, 288.	1.8	0
126	A novel Bcr-Abl splice isoform is associated with the L248V mutation in CML patients with acquired resistance to imatinib. Leukemia, 2006, 20, 2057-2060.	3.3	45

#	Article	IF	Citations
127	p62/SQSTM1: A Missing Link between Protein Aggregates and the Autophagy Machinery. Autophagy, 2006, 2, 138-139.	4.3	274
128	Aurothiomalate Inhibits Transformed Growth by Targeting the PB1 Domain of Protein Kinase $\hat{Cl^1}$. Journal of Biological Chemistry, 2006, 281, 28450-28459.	1.6	92
129	p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. Journal of Cell Biology, 2005, 171, 603-614.	2.3	2,854
130	The third helix of the homeodomain of paired class homeodomain proteins acts as a recognition helix both for DNA and protein interactions. Nucleic Acids Research, 2005, 33, 2661-2675.	6.5	29
131	Interaction Codes within the Family of Mammalian Phox and Bem1p Domain-containing Proteins. Journal of Biological Chemistry, 2003, 278, 34568-34581.	1.6	332
132	Nuclear Import and Export Signals Enable Rapid Nucleocytoplasmic Shuttling of the Atypical Protein Kinase C λ. Journal of Biological Chemistry, 2001, 276, 13015-13024.	1.6	62
133	Superactivation of Pax6-mediated Transactivation from Paired Domain-binding Sites by DNA-independent Recruitment of Different Homeodomain Proteins. Journal of Biological Chemistry, 2001, 276, 4109-4118.	1.6	70
134	The Nuclear Factor SPBP Contains Different Functional Domains and Stimulates the Activity of Various Transcriptional Activators. Journal of Biological Chemistry, 2000, 275, 40288-40300.	1.6	49
135	Phosphorylation of the Transactivation Domain of Pax6 by Extracellular Signal-regulated Kinase and p38 Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1999, 274, 15115-15126.	1.6	89
136	Zebrafish contains two Pax6 genes involved in eye development1The sequence reported in this paper has been deposited in the GenBank data base (accession no. AF061252).1. Mechanisms of Development, 1998, 77, 185-196.	1.7	159
137	Structural and functional analyses of DNA bending induced by Sp1 family transcription factors 1 1Edited by T. Richmond. Journal of Molecular Biology, 1997, 267, 490-504.	2.0	56
138	Reversion of Ras- and Phosphatidylcholine-hydrolyzing Phospholipase C-mediated Transformation of NIH 3T3 Cells by a Dominant Interfering Mutant of Protein Kinase C λ Is Accompanied by the Loss of Constitutive Nuclear Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Activity. Journal of Biological Chemistry, 1997, 272, 11557-11565.	1.6	68
139	Comparative Analyses of LTRs of the ERV-H Family of Primate-Specific Retrovirus-like Elements Isolated from Marmoset, African Green Monkey, and Man. Virology, 1997, 234, 14-30.	1.1	54
140	Zebrafish Pax9 Encodes Two Proteins with Distinct C-terminal Transactivating Domains of Different Potency Negatively Regulated by Adjacent N-terminal Sequences. Journal of Biological Chemistry, 1996, 271, 26914-26923.	1.6	67
141	Noncoding control region of naturally occurring BK virus variants: Sequence comparison and functional analysis. Virus Genes, 1995, 10, 261-275.	0.7	89
142	Evidence for a Bifurcation of the Mitogenic Signaling Pathway Activated by Ras and Phosphatidylcholine-hydrolyzing Phospholipase C. Journal of Biological Chemistry, 1995, 270, 21299-21306.	1.6	71
143	Sequence analysis of 12 structural genes and a novel non-coding region from mitochondrial DNA of Atlantic cod, Gadus morhua. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1218, 213-217.	2.4	10
144	cDNA sequence of zebrafish (Brachydanio rerio) translation elongation factor-1α: Molecular phylogeny of eukaryotes based on elongation factor-lα protein sequences. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 529-532.	2.4	28

#	Article	IF	CITATIONS
145	The putative origin of heavy strand replication (oriH) in mitochondrial DNA is highly conserved among the teleost fishes. DNA Sequence, 1993, 3, 397-399.	0.7	6
146	Zebrafishpou[c]: a divergent POU family gene ubiquitously expressed during embryogenesis. Nucleic Acids Research, 1993, 21, 475-483.	6. 5	28
147	Structure and evolution of myxomycete nuclear group I introns: a model for horizontal transfer by intron homing. Current Genetics, 1992, 22, 297-304.	0.8	53
148	Extrachromosomal ribosomal DNA of Didymium iridis: sequence analysis of the large subunit ribosomal RNA gene and sub-telomeric region. Current Genetics, 1992, 22, 305-312.	0.8	32
149	Expression pattern of zebrafish pax genes suggests a role in early brain regionalization. Nature, 1991, 353, 267-270.	13.7	254
150	Rapid disappearance of one parental mitochondrial genotype after isogamous mating in the myxomycete Physarum polycephalum. Current Genetics, 1991, 19, 55-59.	0.8	47
151	Organization of the mitochondrial genome of Atlantic cod, Gadusmorhua. Nucleic Acids Research, 1990, 18, 411-419.	6.5	144
152	Phospholipase C-mediated hydrolysis of phosphatidlycholine is an important step in PDGF-stimulated DNA synthesis. Cell, 1990, 61, 1113-1120.	13.5	179
153	Members of the RTVL-H family of human endogenous retrovirus-like elements are expressed in placenta. Gene, 1989, 79, 259-267.	1.0	42
154	Nucleotide sequence of the Physarum polycephalum small subunit ribosomal RNA as inferred from the gene sequence: secondary structure and evolutionary implications. Current Genetics, 1988, 14, 265-273.	0.8	60
155	Cloning and sequencing of the gene encoding the phosphatidylcholine-preferring phospholipase C of Bacillus cereus. Gene, 1988, 65, 293-304.	1.0	116
156	Bacillus cereusstrain SE-1: nucleotide sequence of the sphingomyelinase C gene. Nucleic Acids Research, 1988, 16, 10370-10370.	6.5	16