
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7874970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The amygdala and reward. Nature Reviews Neuroscience, 2002, 3, 563-573.	10.2	1,058
2	The amygdala, reward and emotion. Trends in Cognitive Sciences, 2007, 11, 489-497.	7.8	574
3	Control of Response Selection by Reinforcer Value Requires Interaction of Amygdala and Orbital Prefrontal Cortex. Journal of Neuroscience, 2000, 20, 4311-4319.	3.6	548
4	Bilateral Orbital Prefrontal Cortex Lesions in Rhesus Monkeys Disrupt Choices Guided by Both Reward Value and Reward Contingency. Journal of Neuroscience, 2004, 24, 7540-7548.	3.6	534
5	Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch. Journal of Comparative Neurology, 1986, 252, 323-347.	1.6	523
6	The Frontal Cortex-Basal Ganglia System in Primates. Critical Reviews in Neurobiology, 1996, 10, 317-356.	3.1	434
7	Perceptual–mnemonic functions of the perirhinal cortex. Trends in Cognitive Sciences, 1999, 3, 142-151.	7.8	416
8	Object Recognition and Location Memory in Monkeys with Excitotoxic Lesions of the Amygdala and Hippocampus. Journal of Neuroscience, 1998, 18, 6568-6582.	3.6	380
9	Visual Perception and Memory: A New View of Medial Temporal Lobe Function in Primates and Rodents. Annual Review of Neuroscience, 2007, 30, 99-122.	10.7	367
10	Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nature Neuroscience, 2013, 16, 1140-1145.	14.8	344
11	The Orbitofrontal Oracle: Cortical Mechanisms for the Prediction and Evaluation of Specific Behavioral Outcomes. Neuron, 2014, 84, 1143-1156.	8.1	337
12	Organization of corticospinal neurons in the monkey. Journal of Comparative Neurology, 1981, 195, 339-365.	1.6	309
13	Perirhinal cortex resolves feature ambiguity in complex visual discriminations. European Journal of Neuroscience, 2002, 15, 365-374.	2.6	309
14	Excitotoxic Lesions of the Amygdala Fail to Produce Impairment in Visual Learning for Auditory Secondary Reinforcement But Interfere with Reinforcer Devaluation Effects in Rhesus Monkeys. Journal of Neuroscience, 1997, 17, 6011-6020.	3.6	301
15	Perceptual deficits in amnesia: challenging the medial temporal lobe â€~mnemonic' view. Neuropsychologia, 2005, 43, 1-11.	1.6	289
16	Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations Behavioral Neuroscience, 1992, 106, 30-38.	1.2	288
17	Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. Journal of Comparative Neurology, 1986, 252, 348-373.	1.6	287
18	Role of perirhinal cortex in object perception, memory, and associations. Current Opinion in Neurobiology, 2001, 11, 188-193.	4.2	283

#	Article	IF	CITATIONS
19	Arbitrary associations between antecedents and actions. Trends in Neurosciences, 2000, 23, 271-276.	8.6	267
20	Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behavioural Brain Research, 1984, 11, 67-83.	2.2	219
21	Functional Specialization in the Human Medial Temporal Lobe. Journal of Neuroscience, 2005, 25, 10239-10246.	3.6	217
22	What We Know and Do Not Know about the Functions of the Orbitofrontal Cortex after 20 Years of Cross-Species Studies: Figure 1 Journal of Neuroscience, 2007, 27, 8166-8169.	3.6	217
23	Rhesus monkeys (Macaca mulatta) discriminate between knowing and not knowing and collect information as needed before acting. Animal Cognition, 2004, 7, 239-246.	1.8	199
24	Impairments in visual discrimination after perirhinal cortex lesions: testing †declarative' vs. †perceptual-mnemonic' views of perirhinal cortex function. European Journal of Neuroscience, 2003, 17, 649-660.	2.6	194
25	Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Experimental Brain Research, 2000, 133, 114-129.	1.5	189
26	The Perceptual-Mnemonic/Feature Conjunction Model of Perirhinal Cortex Function. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 2005, 58, 269-282.	2.8	180
27	What have ablation studies told us about the neural substrates of stimulus memory?. Seminars in Neuroscience, 1996, 8, 13-22.	2.2	179
28	Comparison of the Effects of Bilateral Orbital Prefrontal Cortex Lesions and Amygdala Lesions on Emotional Responses in Rhesus Monkeys. Journal of Neuroscience, 2005, 25, 8534-8542.	3.6	178
29	Localization of Dysfunction in Major Depressive Disorder: Prefrontal Cortex and Amygdala. Biological Psychiatry, 2011, 69, e43-e54.	1.3	178
30	Dissociable Effects of Subtotal Lesions within the Macaque Orbital Prefrontal Cortex on Reward-Guided Behavior. Journal of Neuroscience, 2011, 31, 10569-10578.	3.6	175
31	Monkeys with rhinal cortex damage or neurotoxic hippocampal lesions are impaired on spatial scene learning and object reversals Behavioral Neuroscience, 1998, 112, 1291-1303.	1.2	174
32	Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatching-to-sample deficits in monkeys. Hippocampus, 2001, 11, 61-71.	1.9	166
33	Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys. European Journal of Neuroscience, 1999, 11, 4403-4418.	2.6	164
34	Amygdala and Orbitofrontal Cortex Lesions Differentially Influence Choices during Object Reversal Learning. Journal of Neuroscience, 2008, 28, 8338-8343.	3.6	159
35	The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta) Behavioral Neuroscience, 2001, 115, 971-982.	1.2	147
36	Combined Unilateral Lesions of the Amygdala and Orbital Prefrontal Cortex Impair Affective Processing in Rhesus Monkeys. Journal of Neurophysiology, 2004, 91, 2023-2039.	1.8	147

#	Article	IF	CITATIONS
37	Specialized Representations of Value in the Orbital and Ventrolateral Prefrontal Cortex: Desirability versus Availability of Outcomes. Neuron, 2017, 95, 1208-1220.e5.	8.1	143
38	Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nature Reviews Neuroscience, 2018, 19, 404-417.	10.2	143
39	Stimulus recognition. Current Opinion in Neurobiology, 1994, 4, 200-206.	4.2	135
40	Orbitofrontal Cortex and Amygdala Contributions to Affect and Action in Primates. Annals of the New York Academy of Sciences, 2007, 1121, 273-296.	3.8	135
41	Effects of Amygdala Lesions on Reward-Value Coding in Orbital and Medial Prefrontal Cortex. Neuron, 2013, 80, 1519-1531.	8.1	135
42	Lesion Studies in Contemporary Neuroscience. Trends in Cognitive Sciences, 2019, 23, 653-671.	7.8	128
43	A role for primate subgenual cingulate cortex in sustaining autonomic arousal. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5391-5396.	7.1	125
44	Rhesus monkeys (Macaca mulatta) demonstrate robust memory for what and where, but not when, in an open-field test of memory. Learning and Motivation, 2005, 36, 245-259.	1.2	122
45	Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3640-8.	7.1	116
46	Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning. Neuron, 2016, 92, 505-517.	8.1	112
47	Selective Bilateral Amygdala Lesions in Rhesus Monkeys Fail to Disrupt Object Reversal Learning. Journal of Neuroscience, 2007, 27, 1054-1062.	3.6	108
48	An assessment of memory awareness in tufted capuchin monkeys (Cebus apella). Animal Cognition, 2009, 12, 169-180.	1.8	108
49	Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in Rhesus monkeys Behavioral Neuroscience, 1996, 110, 1261-1270.	1.2	105
50	Further evidence that amygdala and hippocampus contribute equally to recognition memory. Neuropsychologia, 1984, 22, 785-796.	1.6	100
51	Role of the Hippocampal System in Conditional Motor Learning: Mapping Antecedents to Action. , 1999, 9, 101-117.		100
52	Balkanizing the primate orbitofrontal cortex: distinct subregions for comparing and contrasting values. Annals of the New York Academy of Sciences, 2011, 1239, 1-13.	3.8	100
53	Interaction of ventral and orbital prefrontal cortex with inferotemporal cortex in conditional visuomotor learning Behavioral Neuroscience, 2002, 116, 703-715.	1.2	99
54	Anterior rhinal cortex and amygdala: Dissociation of their contributions to memory and food preference in rhesus monkeys Behavioral Neuroscience, 1996, 110, 30-42.	1.2	96

#	Article	IF	CITATIONS
55	Learning motivational significance of visual cues for reward schedules requires rhinal cortex. Nature Neuroscience, 2000, 3, 1307-1315.	14.8	94
56	Selective hippocampal damage in rhesus monkeys impairs spatial memory in an open-field test. Hippocampus, 2004, 14, 808-818.	1.9	94
57	Differential Effects of Amygdala, Orbital Prefrontal Cortex, and Prelimbic Cortex Lesions on Goal-Directed Behavior in Rhesus Macaques. Journal of Neuroscience, 2013, 33, 3380-3389.	3.6	90
58	Opposing effects of amygdala and orbital prefrontal cortex lesions on the extinction of instrumental responding in macaque monkeys. European Journal of Neuroscience, 2005, 22, 2341-2346.	2.6	89
59	NIMH MonkeyLogic: Behavioral control and data acquisition in MATLAB. Journal of Neuroscience Methods, 2019, 323, 13-21.	2.5	87
60	Rhinal Cortex Removal Produces Amnesia for Preoperatively Learned Discrimination Problems But Fails to Disrupt Postoperative Acquisition and Retention in Rhesus Monkeys. Journal of Neuroscience, 1997, 17, 8536-8549.	3.6	86
61	Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. ELife, 2015, 4, .	6.0	86
62	Organization of tectospinal neurons in the cat and rat superior colliculus. Brain Research, 1982, 243, 201-214.	2.2	84
63	The Role of the Anterior Cingulate Cortex in Choices based on Reward Value and Reward Contingency. Cerebral Cortex, 2013, 23, 2884-2898.	2.9	78
64	The Role of Orbitofrontal–Amygdala Interactions in Updating Action–Outcome Valuations in Macaques. Journal of Neuroscience, 2017, 37, 2463-2470.	3.6	75
65	Interactions between orbital prefrontal cortex and amygdala: advanced cognition, learned responses and instinctive behaviors. Current Opinion in Neurobiology, 2010, 20, 212-220.	4.2	73
66	Functional Interaction of Medial Mediodorsal Thalamic Nucleus But Not Nucleus Accumbens with Amygdala and Orbital Prefrontal Cortex Is Essential for Adaptive Response Selection after Reinforcer Devaluation. Journal of Neuroscience, 2010, 30, 661-669.	3.6	73
67	Genetic modulation of cognitive flexibility and socioemotional behavior in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14128-14133.	7.1	70
68	DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12336-12341.	7.1	69
69	Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning. Journal of Neuroscience, 2017, 37, 2186-2202.	3.6	67
70	The Role of Frontal Cortical and Medial-Temporal Lobe Brain Areas in Learning a Bayesian Prior Belief on Reversals. Journal of Neuroscience, 2015, 35, 11751-11760.	3.6	66
71	Impairment and Facilitation of Transverse Patterning after Lesions of the Perirhinal Cortex and Hippocampus, Respectively. Cerebral Cortex, 2006, 17, 108-115.	2.9	64
72	Neural substrates of crossmodal association memory in monkeys: The amygdala versus the anterior rhinal cortex Behavioral Neuroscience, 2001, 115, 271-284.	1.2	63

#	Article	IF	CITATIONS
73	Hippocampal Lesions in Rhesus Monkeys Disrupt Emotional Responses but Not Reinforcer Devaluation Effects. Biological Psychiatry, 2008, 63, 1084-1091.	1.3	62
74	Amygdala lesions eliminate viewing preferences for faces in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8043-8048.	7.1	61
75	Impairments in visual discrimination learning and recognition memory produced by neurotoxic lesions of rhinal cortex in rhesus monkeys. European Journal of Neuroscience, 2001, 13, 1228-1238.	2.6	60
76	Distinct contributions of the amygdala and hippocampus to fear expression. European Journal of Neuroscience, 2009, 30, 2327-2337.	2.6	60
77	Amygdala lesions in rhesus macaques decrease attention to threat. Nature Communications, 2015, 6, 10161.	12.8	60
78	No effect of hippocampal lesions on perirhinal cortex-dependent feature-ambiguous visual discriminations. Hippocampus, 2006, 16, 421-430.	1.9	56
79	Representational specializations of the hippocampus in phylogenetic perspective. Neuroscience Letters, 2018, 680, 4-12.	2.1	53
80	Learning to inhibit prepotent responses: successful performance by rhesus macaques, Macaca mulatta, on the reversed-contingency task. Animal Behaviour, 2005, 69, 991-998.	1.9	52
81	Severe tactual memory deficits in monkeys after combined removal of the amygdala and hippocampus. Brain Research, 1983, 270, 340-344.	2.2	49
82	Learning of discriminations is impaired, but generalization to altered views is intact, in monkeys (Macaca mulatta) with perirhinal cortex removal Behavioral Neuroscience, 2002, 116, 363-377.	1.2	45
83	The anterior cingulate cortex is necessary for forming prosocial preferences from vicarious reinforcement in monkeys. PLoS Biology, 2020, 18, e3000677.	5.6	45
84	Interaction of ventral and orbital prefrontal cortex with inferotemporal cortex in conditional visuomotor learning. Behavioral Neuroscience, 2002, 116, 703-15.	1.2	45
85	Perirhinal cortex and feature-ambiguous discriminations. Learning and Memory, 2006, 13, 103-105.	1.3	43
86	Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning. Journal of Neuroscience, 2017, 37, 6902-6914.	3.6	43
87	What, if anything, is the medial temporal lobe, and how can the amygdala be part of it if there is no such thing?. Neurobiology of Learning and Memory, 2004, 82, 178-198.	1.9	42
88	Perirhinal Cortex and its Neighbours in the Medial Temporal Lobe: Contributions to Memory and Perception. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 2005, 58, 378-396.	2.8	38
89	Selective Ablations Reveal That Orbital and Lateral Prefrontal Cortex Play Different Roles in Estimating Predicted Reward Value. Journal of Neuroscience, 2010, 30, 15878-15887.	3.6	35
90	Using pupil size and heart rate to infer affective states during behavioral neurophysiology and neuropsychology experiments. Journal of Neuroscience Methods, 2017, 279, 1-12.	2.5	34

#	Article	IF	CITATIONS
91	Consolidation and the medial temporal lobe revisited: Methodological considerations. Hippocampus, 2001, 11, 1-7.	1.9	33
92	The drive to strive: goal generation based on current needs. Frontiers in Neuroscience, 2013, 7, 112.	2.8	33
93	Prospective memory in the formation of learning sets by rhesus monkeys (Macaca mulatta) Journal of Experimental Psychology, 2006, 32, 87-90.	1.7	32
94	Why is there a special issue on perirhinal cortex in a journal called <i>hippocampus</i> ? The perirhinal cortex in historical perspective. Hippocampus, 2012, 22, 1941-1951.	1.9	32
95	The SIV-infected rhesus monkey model for HIV-associated dementia and implications for neurological diseases. Journal of Leukocyte Biology, 1999, 65, 466-474.	3.3	31
96	Interaction Between Orbital Prefrontal and Rhinal Cortex Is Required for Normal Estimates of Expected Value. Journal of Neuroscience, 2013, 33, 1833-1845.	3.6	31
97	Removal of the amygdala plus subjacent cortex disrupts the retention of both intramodal and cross modal associative memories in monkeys Behavioral Neuroscience, 1994, 108, 494-500.	1.2	30
98	Learned Value Shapes Responses to Objects in Frontal and Ventral Stream Networks in Macaque Monkeys. Cerebral Cortex, 2017, 27, 2739-2757.	2.9	30
99	Hypothalamic Interactions with Large-Scale Neural Circuits Underlying Reinforcement Learning and Motivated Behavior. Trends in Neurosciences, 2020, 43, 681-694.	8.6	30
100	Rhinal cortex ablations fail to disrupt reinforcer devaluation effects in rhesus monkeys (Macaca) Tj ETQq0 0 0 rgE	3T /Overloo 1.2	ck 10 Tf 50 3 29
101	Total number, distribution, and phenotype of cells expressing chondroitin sulfate proteoglycans in the normal human amygdala. Brain Research, 2008, 1207, 84-95.	2.2	29
102	Ventral striatum's role in learning from gains and losses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12398-E12406.	7.1	28
103	Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology, 2022, 47, 163-179.	5.4	28
104	Effects of hippocampal lesions on delayed nonmatching-to-sample in monkeys: A reply to Zola and Squire (2001). Hippocampus, 2001, 11, 201-203.	1.9	27
105	Fornix Transection Impairs Conditional Visuomotor Learning in Tasks Involving Nonspatially Differentiated Responses. Journal of Neurophysiology, 2002, 87, 631-633.	1.8	26
106	Learning of discriminations is impaired, but generalization to altered views is intact, in monkeys (Macaca mulatta) with perirhinal cortex removal Behavioral Neuroscience, 2002, 116, 363-377.	1.2	25
107	Cross-modal associations, intramodal associations, and object identification in macaque monkeys. , 1998, , 51-69.		25
108	Evolution, Emotion, and Episodic Engagement. American Journal of Psychiatry, 2021, 178, 701-714.	7.2	24

#	Article	IF	CITATIONS
109	Method for making selective lesions of the hippocampus in macaque monkeys using NMDA and a longitudinal surgical approach. Hippocampus, 2004, 14, 9-18.	1.9	23
110	Heightened Defensive Responses Following Subtotal Lesions of Macaque Orbitofrontal Cortex. Journal of Neuroscience, 2019, 39, 4133-4141.	3.6	23
111	What, if anything, can monkeys tell us about human amnesia when they can't say anything at all?. Neuropsychologia, 2010, 48, 2385-2405.	1.6	22
112	Rhinal cortex lesions produce mild deficits in visual discrimination learning for an auditory secondary reinforcer in rhesus monkeys Behavioral Neuroscience, 1999, 113, 243-252.	1.2	19
113	Perirhinal Cortex Removal Dissociates Two Memory Systems in Matching-to-Sample Performance in Rhesus Monkeys. Journal of Neuroscience, 2011, 31, 16336-16343.	3.6	19
114	Conditional Motor Learning in the Nonspatial Domain: Effects of Errorless Learning and the Contribution of the Fornix to One-Trial Learning Behavioral Neuroscience, 2005, 119, 662-676.	1.2	18
115	Gustatory responses in macaque monkeys revealed with fMRI: Comments on taste, taste preference, and internal state. Neurolmage, 2019, 184, 932-942.	4.2	18
116	Contributions of the hippocampus and entorhinal cortex to rapid visuomotor learning in rhesus monkeys. Hippocampus, 2014, 24, 1102-1111.	1.9	17
117	Effects of Amygdala Lesions on Object-Based Versus Action-Based Learning in Macaques. Cerebral Cortex, 2021, 31, 529-546.	2.9	14
118	Interaction between decision-making and interoceptive representations of bodily arousal in frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
119	Chapter 8 Contributions of the amygdalar complex to behavior in macaque monkeys. Progress in Brain Research, 1991, 87, 167-180.	1.4	12
120	Preface. Annals of the New York Academy of Sciences, 2007, 1121, xi-xiii.	3.8	12
121	Effects of Combined and Separate Removals of Rostral Dorsal Superior Temporal Sulcus Cortex and Perirhinal Cortex on Visual Recognition Memory in Rhesus Monkeys. Journal of Neurophysiology, 2003, 90, 2419-2427.	1.8	11
122	MRI Overestimates Excitotoxic Amygdala Lesion Damage in Rhesus Monkeys. Frontiers in Integrative Neuroscience, 2017, 11, 12.	2.1	10
123	The visual prefrontal cortex of anthropoids: interaction with temporal cortex in decision making and its role in the making of †visual animals'. Current Opinion in Behavioral Sciences, 2021, 41, 22-29.	3.9	10
124	What Can Different Brains Do with Reward?. Frontiers in Neuroscience, 2011, , 61-96.	0.0	10
125	No evidence that monkeys attribute mental states to animated shapes in the Heider–Simmel videos. Scientific Reports, 2021, 11, 3050.	3.3	8
126	Effects of partial versus complete lesions of the amygdala on cross-modal associations in cynomolgus monkeys. Cognitive, Affective and Behavioral Neuroscience, 1996, 24, 255-264.	1.3	8

#	Article	IF	CITATIONS
127	AIDS and the Central Nervous System: Examining Pathobiology and Testing Therapeutic Strategies in the SIV-Infected Rhesus Monkey. Annals of the New York Academy of Sciences, 1993, 693, 229-244.	3.8	6
128	Amygdala lesions in rhesus monkeys fail to disrupt object choices based on internal context Behavioral Neuroscience, 2012, 126, 270-278.	1.2	5
129	Selective Prefrontal–Amygdala Circuit Interactions Underlie Social and Nonsocial Valuation in Rhesus Macaques. Journal of Neuroscience, 2022, 42, 5593-5604.	3.6	5
130	Ventral striatum lesions do not affect reinforcement learning with deterministic outcomes on slow time scales Behavioral Neuroscience, 2017, 131, 385-391.	1.2	4
131	The magical orbitofrontal cortex Behavioral Neuroscience, 2021, 135, 108-108.	1.2	3
132	Two-item same/different discrimination in rhesus monkeys (Macaca mulatta). Animal Cognition, 2015, 18, 1221-1230.	1.8	2
133	Relational but not spatial memory: The task at hand. Behavioral and Brain Sciences, 1994, 17, 489-490.	0.7	1
134	Autonomic arousal tracks outcome salience not valence in monkeys making social decisions Behavioral Neuroscience, 2021, 135, 443-452.	1.2	1
135	Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatchingâ€ŧoâ€sample deficits in monkeys. Hippocampus, 2001, 11, 61-71.	1.9	1
136	Role of prefrontal cortex in a network for arbitrary visuomotor mapping. , 2000, , 114-129.		1
137	Amygdala damage eliminates monkeys' viewing preference for real and illusory faces Journal of Vision, 2018, 18, 1232.	0.3	0
138	Mortimer Mishkin (1926–2021): A life of science with humility and grace. Neuron, 2021, 109, 3392-3394.	8.1	0