Volker Loeschcke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7874930/publications.pdf

Version: 2024-02-01

374 papers 18,820 citations

65 h-index 23841 115 g-index

388 all docs

388 docs citations

times ranked

388

14261 citing authors

#	Article	IF	CITATIONS
1	Thermal boldness: Volunteer exploration of extreme temperatures in fruit flies. Journal of Insect Physiology, 2022, 136, 104330.	0.9	5
2	The discovery, distribution, and diversity of DNA viruses associated with <i>Drosophila melanogaster </i> in Europe. Virus Evolution, 2021, 7, veab031.	2.2	25
3	Detecting purging of inbreeding depression by a slow rate of inbreeding for various traits: the impact of environmental and experimental conditions. Heredity, 2021, 127, 10-20.	1.2	8
4	No water, no eggs: insights from a warming outdoor mesocosm experiment. Ecological Entomology, 2021, 46, 1093-1100.	1.1	4
5	Daily increasing or decreasing photoperiod affects stress resistance and life history traits in four Drosophila species. Journal of Insect Physiology, 2021, 132, 104251.	0.9	2
6	<i>Drosophila</i> Evolution over Space and Time (DEST): A New Population Genomics Resource. Molecular Biology and Evolution, 2021, 38, 5782-5805.	3.5	37
7	The importance of environmental microbes for Drosophila melanogaster during seasonal macronutrient variability. Scientific Reports, 2021, 11, 18850.	1.6	5
8	Assessing the current feces identification method of the European otter Lutra lutra. Wildlife Biology, 2021, 2021, .	0.6	2
9	Responses to Developmental Temperature Fluctuation in Life History Traits of Five Drosophila Species (Diptera: Drosophilidae) from Different Thermal Niches. Insects, 2021, 12, 925.	1.0	2
10	Fungal infections lead to shifts in thermal tolerance and voluntary exposure to extreme temperatures in both prey and predator insects. Scientific Reports, 2021, 11, 21710.	1.6	6
11	Pronounced Plastic and Evolutionary Responses to Unpredictable Thermal Fluctuations in Drosophila simulans. Frontiers in Genetics, 2020, 11, 555843.	1.1	9
12	Expression of thermal tolerance genes in two Drosophila species with different acclimation capacities. Journal of Thermal Biology, 2019, 84, 200-207.	1.1	17
13	Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 <i>Drosophila</i> species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180548.	1.8	77
14	Sex and age specific reduction in stress resistance and mitochondrial DNA copy number in Drosophila melanogaster. Scientific Reports, 2019, 9, 12305.	1.6	25
15	Fluctuations in nutrient composition affect male reproductive output in Drosophila melanogaster. Journal of Insect Physiology, 2019, 118, 103940.	0.9	4
16	Genomic signatures of experimental adaptive radiation in <i>Drosophila</i> . Molecular Ecology, 2019, 28, 600-614.	2.0	37
17	Geographic variation in responses of European yellow dung flies to thermal stress. Journal of Thermal Biology, 2018, 73, 41-49.	1.1	13
18	Linking developmental diet to adult foraging choice in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2018, 221, .	0.8	21

#	Article	IF	CITATIONS
19	Plasticity for desiccation tolerance across <i>Drosophila</i> species is affected by phylogeny and climate in complex ways. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180048.	1.2	46
20	Functional Validation of Candidate Genes Detected by Genomic Feature Models. G3: Genes, Genomes, Genetics, 2018, 8, 1659-1668.	0.8	14
21	Constitutive up-regulation of Turandot genes rather than changes in acclimation ability is associated with the evolutionary adaptation to temperature fluctuations in Drosophila simulans. Journal of Insect Physiology, 2018, 104, 40-47.	0.9	15
22	How much starvation, desiccation and oxygen depletion can Drosophila melanogaster tolerate before its upper thermal limits are affected?. Journal of Insect Physiology, 2018, 111, 1-7.	0.9	17
23	Metabolic cold adaptation contributes little to the interspecific variation in metabolic rates of 65 species of Drosophilidae. Journal of Insect Physiology, 2017, 98, 309-316.	0.9	24
24	Metabolic and functional characterization of effects of developmental temperature in <i>Drosophila melanogaster</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R211-R222.	0.9	46
25	Environmental heterogeneity does not affect levels of phenotypic plasticity in natural populations of three <i>Drosophila</i> species. Ecology and Evolution, 2017, 7, 2716-2724.	0.8	20
26	Evolutionary adaptation to environmental stressors: a common response at the proteomic level. Evolution; International Journal of Organic Evolution, 2017, 71, 1627-1642.	1.1	18
27	Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance. Molecular Ecology, 2017, 26, 6510-6523.	2.0	40
28	Using population viability analysis, genomics, and habitat suitability to forecast future population patterns of Little Owl <i>Athene noctua</i> across Europe. Ecology and Evolution, 2017, 7, 10987-11001.	0.8	13
29	Nucleotide diversity inflation as a genome-wide response to experimental lifespan extension in Drosophila melanogaster. BMC Genomics, 2017, 18, 84.	1.2	19
30	Linear reaction norms of thermal limits in <i>Drosophila</i> : predictable plasticity in cold but not in heat tolerance. Functional Ecology, 2017, 31, 934-945.	1.7	74
31	A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a <i>Drosophila melanogaster</i> Model Population. International Journal of Genomics, 2016, 2016, 1-11.	0.8	18
32	Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature. Scientific Reports, 2016, 6, 30975.	1.6	62
33	A novel alternative to F -tests for ecological studies. Ecological Indicators, 2016, 67, 484-490.	2.6	0
34	Mild heat treatments induce long-term changes in metabolites associated with energy metabolism in Drosophila melanogaster. Biogerontology, 2016, 17, 873-882.	2.0	13
35	Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes. Heredity, 2016, 117, 149-154.	1.2	11
36	Reversibility of developmental heat and cold plasticity is asymmetric and has long lasting consequences for adult thermal tolerance. Journal of Experimental Biology, 2016, 219, 2726-32.	0.8	38

#	Article	IF	Citations
37	Injuries can prolong lifespan in Drosophila melanogaster males. Biogerontology, 2016, 17, 337-346.	2.0	8
38	Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior. Fly, 2016, 10, 25-34.	0.9	13
39	Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in <i>Drosophila melanogaster</i> . American Naturalist, 2015, 186, 582-593.	1.0	38
40	Patterns of longevity and fecundity at two temperatures in a set of heat-selected recombinant inbred lines of Drosophila melanogaster. Biogerontology, 2015, 16, 801-810.	2.0	8
41	Life span variation in 13 <i>Drosophila</i> species: a comparative study on life span, environmental variables and stress resistance. Journal of Evolutionary Biology, 2015, 28, 1892-1900.	0.8	10
42	Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments. Journal of Evolutionary Biology, 2015, 28, 2078-2087.	0.8	46
43	Patterns of variation in desiccation resistance in a set of recombinant inbred lines in <i><scp>D</scp>rosophila melanogaster</i> . Physiological Entomology, 2015, 40, 205-211.	0.6	2
44	Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster. PLoS ONE, 2015, 10, e0130307.	1.1	42
45	Inbreeding depression across a nutritional stress continuum. Heredity, 2015, 115, 56-62.	1.2	19
46	Male Drosophila melanogaster learn to prefer an arbitrary trait associated with female mating status. Environmental Epigenetics, 2015, 61, 1036-1042.	0.9	14
47	Phospholipid fatty acid composition linking larval-density to lifespan of adult Drosophila melanogaster. Experimental Gerontology, 2015, 72, 177-183.	1.2	13
48	How to assess <i>Drosophila</i> cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Functional Ecology, 2015, 29, 55-65.	1.7	214
49	Inbreeding Affects Locomotor Activity in Drosophila melanogaster at Different Ages. Behavior Genetics, 2015, 45, 127-134.	1.4	11
50	No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population. Journal of Insect Physiology, 2015, 77, 9-14.	0.9	29
51	The Effect of Social Isolation on Locomotor Activity in the Houseflies (Musca Domestica). Journal of Insect Behavior, 2015, 28, 288-296.	0.4	11
52	Sodium distribution predicts the chill tolerance of <i>Drosophila melanogaster </i> raised in different thermal conditions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R823-R831.	0.9	65
53	Traitâ€specific consequences of inbreeding on adaptive phenotypic plasticity. Ecology and Evolution, 2015, 5, 1-6.	0.8	8
54	Plasticity in behavioural responses and resistance to temperature stress in Musca domestica. Animal Behaviour, 2015, 99, 123-130.	0.8	35

#	Article	IF	Citations
55	The Role of Storage Lipids in the Relation between Fecundity, Locomotor Activity, and Lifespan of Drosophila melanogaster Longevity-Selected and Control Lines. PLoS ONE, 2015, 10, e0130334.	1.1	18
56	DOES ENVIRONMENTAL ROBUSTNESS PLAY A ROLE IN FLUCTUATING ENVIRONMENTS?. Evolution; International Journal of Organic Evolution, 2014, 68, 587-594.	1.1	19
57	Temperatureâ€specific acclimation effects on adult locomotor performance of inbred and crossbred <i>Drosophila melanogaster</i>). Physiological Entomology, 2014, 39, 127-135.	0.6	2
58	Phenotypic plasticity with instantaneous but delayed switches. Journal of Theoretical Biology, 2014, 340, 60-72.	0.8	19
59	Predictability rather than amplitude of temperature fluctuations determines stress resistance in a natural population of <i>Drosophila simulans</i> . Journal of Evolutionary Biology, 2014, 27, 2113-2122.	0.8	62
60	Temperature and photoperiod affect stress resistance traits in <i>Drosophila melanogaster</i> Physiological Entomology, 2014, 39, 237-246.	0.6	23
61	Genetic variability of central–western European pine marten (Martes martes) populations. Acta Theriologica, 2014, 59, 503-510.	1.1	5
62	Flies who cannot take the heat: genomeâ€wide gene expression analysis of temperatureâ€sensitive lethality in an inbred line of <i><scp>D</scp>rosophila melanogaster</i> . Journal of Evolutionary Biology, 2014, 27, 2152-2162.	0.8	7
63	Scaling of the mean and variance of population dynamics under fluctuating regimes. Theory in Biosciences, 2014, 133, 165-173.	0.6	4
64	Inbreeding effects on standard metabolic rate investigated at cold, benign and hot temperatures in Drosophila melanogaster. Journal of Insect Physiology, 2014, 62, 11-20.	0.9	33
65	A <i><scp>D</scp>rosophila</i> laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. Journal of Evolutionary Biology, 2014, 27, 1859-1868.	0.8	79
66	The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan. Experimental Gerontology, 2014, 50, 34-39.	1.2	43
67	The phenotypic variance gradient – a novel concept. Ecology and Evolution, 2014, 4, 4230-4236.	0.8	5
68	Genetic Consequences of Forest Fragmentation for a Highly Specialized Arboreal Mammal - the Edible Dormouse. PLoS ONE, 2014, 9, e88092.	1.1	31
69	Cellular damage as induced by high temperature is dependent on rate of temperature change – investigating consequences of ramping rates on molecular and organismal phenotypes in <i>Drosophila melanogaster⟨ i⟩ Meigen 1830. Journal of Experimental Biology, 2013, 216, 809-14.</i>	0.8	43
70	Tissue specific haemoglobin gene expression suggests adaptation to local marine conditions in North Sea flounder (Platichthys flesus L.). Genes and Genomics, 2013, 35, 541-547.	0.5	7
71	Metabolomic analysis of the selection response of Drosophila melanogaster to environmental stress: are there links to gene expression and phenotypic traits?. Die Naturwissenschaften, 2013, 100, 417-427.	0.6	27
72	Transcriptomic analysis of inbreeding depression in coldâ€sensitive ⟨i⟩Drosophila melanogaster⟨i⟩ shows upregulation of the immune response. Journal of Evolutionary Biology, 2013, 26, 1890-1902.	0.8	49

#	Article	IF	Citations
73	QTL for survival to UV-C radiation in <i>Drosophila melanogaster</i> . International Journal of Radiation Biology, 2013, 89, 583-589.	1.0	6
74	Confirming candidate genes for longevity by RT-qPCR using two different genetic backgrounds and selection methods. Journal of Insect Physiology, 2013, 59, 255-262.	0.9	4
75	Age-induced perturbation in cell membrane phospholipid fatty acid profile of longevity-selected Drosophila melanogaster and corresponding control lines. Experimental Gerontology, 2013, 48, 1362-1368.	1.2	14
76	Laboratory selection for increased longevity in Drosophila melanogaster reduces field performance. Experimental Gerontology, 2013, 48, 1189-1195.	1.2	14
77	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2012 – 30 September 2012. Molecular Ecology Resources, 2013, 13, 158-159.	2.2	26
78	Longevity for free? Increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased life span. Experimental Gerontology, 2013, 48, 349-357.	1.2	37
79	The Effect of Fluctuating Temperatures During Development on Fitness-Related Traits of Scatophaga stercoraria (Diptera: Scathophagidae). Environmental Entomology, 2013, 42, 1069-1078.	0.7	47
80	Temperature and Population Density Effects on Locomotor Activity of <l>Musca domestica</l> (Diptera: Muscidae). Environmental Entomology, 2013, 42, 1322-1328.	0.7	28
81	Gene flow and population structure of a common agricultural wild species (Microtus agrestis) under different land management regimes. Heredity, 2013, 111, 486-494.	1.2	13
82	Stress-induced plastic responses in <i>Drosophila simulans </i> following exposure to combinations of temperature and humidity levels. Journal of Experimental Biology, 2013, 216, 4601-7.	0.8	26
83	Heat stress survival in the pre-adult stage of the life cycle in an intercontinental set of recombinant inbred lines of <i>Drosophila melanogaster </i>	0.8	12
84	Proteomic Characterization of Inbreeding-Related Cold Sensitivity in Drosophila melanogaster. PLoS ONE, 2013, 8, e62680.	1.1	5
85	Effects of Land Management Strategies on the Dispersal Pattern of a Beneficial Arthropod. PLoS ONE, 2013, 8, e66208.	1.1	14
86	Characterization of the genetic profile of five Danish dog breeds1. Journal of Animal Science, 2013, 91, 5122-5127.	0.2	6
87	A Comparison of Inbreeding Depression in Tropical and Widespread Drosophila Species. PLoS ONE, 2013, 8, e51176.	1.1	12
88	Trait Associations across Evolutionary Time within a Drosophila Phylogeny: Correlated Selection or Genetic Constraint?. PLoS ONE, 2013, 8, e72072.	1.1	14
89	Thermal adaptation: Combining evolutionary and physiological approaches. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 163, S4.	0.8	0
90	Upper thermal limits of <i>Drosophila</i> are linked to species distributions and strongly constrained phylogenetically. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16228-16233.	3.3	454

#	Article	IF	CITATIONS
91	The Transferability of Illumina Canine BeadChip Single-Nucleotide Polymorphisms (SNPs) to American Mink (Neovison vison). Biochemical Genetics, 2012, 50, 717-721.	0.8	O
92	The Effects of Sex-Ratio and Density on Locomotor Activity in the House Fly, <i>Musca domestica </i> Journal of Insect Science, 2012, 12, 1-12.	0.6	116
93	Age-related and sex-specific differences in proteasome activity in individual Drosophila flies from wild type, longevity-selected and stress resistant strains. Biogerontology, 2012, 13, 429-438.	2.0	15
94	Comparison of single nucleotide polymorphisms and microsatellites in non-invasive genetic monitoring of a wolf population. Archives of Biological Sciences, 2012, 64, 321-335.	0.2	21
95	Survival of heat stress with and without heat hardening in <i>Drosophila melanogaster</i> interactions with larval density. Journal of Experimental Biology, 2012, 215, 2220-2225.	0.8	17
96	Differences in Salinity Tolerance and Gene Expression Between Two Populations of Atlantic Cod (Gadus morhua) in Response to Salinity Stress. Biochemical Genetics, 2012, 50, 454-466.	0.8	43
97	Plastic responses to four environmental stresses and crossâ€resistance in a laboratory population of <i>Drosophila melanogaster</i>). Functional Ecology, 2012, 26, 245-253.	1.7	90
98	East Greenland and Barents Sea polar bears (Ursus maritimus): adaptive variation between two populations using skull morphometrics as an indicator of environmental and genetic differences. Hereditas, 2012, 149, 99-107.	0.5	9
99	Genetic erosion impedes adaptive responses to stressful environments. Evolutionary Applications, 2012, 5, 117-129.	1.5	242
100	PHYLOGENETIC CONSTRAINTS IN KEY FUNCTIONAL TRAITS BEHIND SPECIES' CLIMATE NICHES: PATTERNS OF DESICCATION AND COLD RESISTANCE ACROSS 95 <i>DROSOPHILA</i> Journal of Organic Evolution, 2012, 66, 3377-3389.	1.1	261
101	Effects of rearing and induction temperature on the temporal dynamics of heat shock protein 70 expression in a butterfly. Physiological Entomology, 2012, 37, 103-108.	0.6	7
102	Hsp70 protein levels and thermotolerance in <i>Drosophila subobscura</i> : a reassessment of the thermal coâ€adaptation hypothesis. Journal of Evolutionary Biology, 2012, 25, 691-700.	0.8	41
103	Can evolution of sexual dimorphism be triggered by developmental temperatures?. Journal of Evolutionary Biology, 2012, 25, 847-855.	0.8	14
104	Humidity affects genetic architecture of heat resistance in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2012, 25, 1180-1188.	0.8	36
105	Constant, cycling, hot and cold thermal environments: strong effects on mean viability but not on genetic estimates. Journal of Evolutionary Biology, 2012, 25, 1209-1215.	0.8	19
106	The Metabolic Profile of Long-Lived Drosophila melanogaster. PLoS ONE, 2012, 7, e47461.	1.1	37
107	Characterization of 151 SNPs for population structure analysis of the endangered Tatra chamois (Rupicapra rupicapra tatrica) and its relative, the Alpine chamois (R. r. rupicapra). Mammalian Biology, 2011, 76, 644-645.	0.8	1
108	Microgeographical population structure and adaptation in Atlantic cod Gadus morhua: spatio-temporal insights from gene-associated DNA markers. Marine Ecology - Progress Series, 2011, 436, 231-243.	0.9	28

#	Article	IF	Citations
109	Effects of predator exposure on Hsp70 expression and survival in tadpoles of the Common Frog (RanaÂtemporaria). Canadian Journal of Zoology, 2011, 89, 1249-1255.	0.4	5
110	Altitudinal and seasonal variation in microsatellite allele frequencies of <i>Drosophila buzzatii</i> Journal of Evolutionary Biology, 2011, 24, 430-439.	0.8	13
111	Inbreeding affects fecundity of American mink (<i>Neovison vison</i>) in Danish farm mink. Animal Genetics, 2011, 42, 437-439.	0.6	10
112	NO INBREEDING DEPRESSION FOR LOW TEMPERATURE DEVELOPMENTAL ACCLIMATION ACROSS MULTIPLE DROSOPHILA SPECIES. Evolution; International Journal of Organic Evolution, 2011, 65, 3195-3201.	1.1	17
113	Allometric and non-allometric consequences of inbreeding on Drosophila melanogaster wings. Biological Journal of the Linnean Society, 2011, 102, 626-634.	0.7	10
114	Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster. Journal of Insect Physiology, 2011, 57, 1227-1231.	0.9	15
115	Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster. Experimental Gerontology, 2011, 46, 819-826.	1.2	18
116	Slow inbred lines of Drosophila melanogaster express as much inbreeding depression as fast inbred lines under semi-natural conditions. Genetica, 2011, 139, 441-451.	0.5	11
117	Life extension and the position of the hormetic zone depends on sex and genetic background in Drosophila melanogaster. Biogerontology, 2011, 12, 109-117.	2.0	35
118	Flies selected for longevity retain a young gene expression profile. Age, 2011, 33, 69-80.	3.0	43
119	Dietary protein content affects evolution for body size, body fat and viability in <i>Drosophila melanogaster</i> . Biology Letters, 2011, 7, 269-272.	1.0	37
120	Level of Heat Shock Proteins Decreases in Individuals Carrying B-Chromosomes in the Grasshopper & Lipper & Lipp	0.6	4
121	Candidate Genes Detected in Transcriptome Studies Are Strongly Dependent on Genetic Background. PLoS ONE, 2011, 6, e15644.	1.1	36
122	Characterization of the shsp genes in Drosophila buzzatii and association between the frequency of Valine mutations in hsp23 and climatic variables along a longitudinal gradient in Australia. Cell Stress and Chaperones, 2010, 15, 271-280.	1.2	6
123	Trait specific consequences of fast and slow inbreeding: lessons from captive populations of Drosophila melanogaster. Conservation Genetics, 2010, 11, 479-488.	0.8	26
124	Genome variability in European and American bison detected using the BovineSNP50 BeadChip. Conservation Genetics, 2010, 11, 627-634.	0.8	46
125	Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe. Conservation Genetics, 2010, 11, 583-599.	0.8	53
126	Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. Journal of Insect Physiology, 2010, 56, 336-340.	0.9	138

#	Article	lF	Citations
127	Conservation genetics in transition to conservation genomics. Trends in Genetics, 2010, 26, 177-187.	2.9	314
128	Adult heat tolerance variation in <i>Drosophila melanogaster</i> is not related to Hsp70 expression. Journal of Experimental Zoology, 2010, 313A, 35-44.	1.2	42
129	Field tests reveal genetic variation for performance at low temperatures in <i>Drosophila melanogaster</i> . Functional Ecology, 2010, 24, 186-195.	1.7	25
130	Proteomic characterization of a temperature-sensitive conditional lethal in Drosophila melanogaster. Heredity, 2010, 104, 125-134.	1.2	17
131	Developmental acclimation affects clinal variation in stress resistance traits in <i>Drosophila buzzatii</i> . Journal of Evolutionary Biology, 2010, 23, 957-965.	0.8	20
132	Evolutionary Theory and Studies of Model Organisms Predict a Cautiously Positive Perspective on the Therapeutic Use of Hormesis for Healthy Aging in Humans. Dose-Response, 2010, 8, dose-response.0.	0.7	11
133	Assessing re-introductions of the African Wild dog (Lycaon pictus) in the Limpopo Valley Conservancy, South Africa, using the stochastic simulation program VORTEX. Journal for Nature Conservation, 2010, 18, 237-246.	0.8	17
134	Phylogenetic relationships among the European and American bison and seven cattle breeds reconstructed using the BovineSNP50 Illumina Genotyping BeadChip. Acta Theriologica, 2010, 55, 97-108.	1.1	13
135	Research on inbreeding in the â€~omic' era. Trends in Ecology and Evolution, 2010, 25, 44-52.	4.2	114
136	Locomotor activity of Drosophila melanogaster in high temperature environments: plastic and evolutionary responses. Climate Research, 2010, 43, 127-134.	0.4	22
137	Temperature–maternal age interactions on wing traits in outbred Drosophila mercatorum. Climate Research, 2010, 43, 49-56.	0.4	6
138	Genetic variation in heat resistance and HSP70 expression in inbred isofemale lines of the springtail Orchesella cincta. Climate Research, 2010, 43, 41-47.	0.4	22
139	Population viability analysis on domestic horse breeds (Equus caballus) 1. Journal of Animal Science, 2009, 87, 3525-3535.	0.2	13
140	Quantitative trait locus for starvation resistance in an intercontinental set of mapping populations of <i>Drosophila melanogaster </i> . Fly, 2009, 3, 247-252.	0.9	3
141	Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola. Journal of Insect Physiology, 2009, 55, 210-217.	0.9	44
142	Stress specific correlated responses in fat content, Hsp70 and dopamine levels in Drosophila melanogaster selected for resistance to environmental stress. Journal of Insect Physiology, 2009, 55, 700-706.	0.9	4
143	Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster. Journal of Insect Physiology, 2009, 55, 1050-1057.	0.9	19
144	Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evolutionary Biology, 2009, 9, 276.	3.2	198

#	Article	IF	CITATIONS
145	Consequences of outbreeding on phenotypic plasticity in Drosophila mercatorum wings. Evolutionary Ecology, 2009, 23, 403-415.	0.5	8
146	Lessons from the use of genetically modified <i>Drosophila melanogaster</i> in ecological studies: Hsf mutant lines show highly traitâ€specific performance in field and laboratory thermal assays. Functional Ecology, 2009, 23, 240-247.	1.7	25
147	The rapid cold hardening response of Collembola is influenced by thermal variability of the habitat. Functional Ecology, 2009, 23, 340-347.	1.7	63
148	Dynamics of heatâ€induced thermal stress resistance and hsp70 expression in the springtail, <i>Orchesella cincta</i> . Functional Ecology, 2009, 23, 233-239.	1.7	114
149	Efficiency of selection, as measured by single nucleotide polymorphism variation, is dependent on inbreeding rate in <i>Drosophila melanogaster</i>). Molecular Ecology, 2009, 18, 4551-4563.	2.0	30
150	Bottlenecks, population differentiation and apparent selection at microsatellite loci in Australian Drosophila buzzatii. Heredity, 2009, 102, 389-401.	1.2	29
151	Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison. Heredity, 2009, 103, 326-332.	1.2	125
152	Frequent non-reciprocal exchange in microsatellite-containing-DNA-regions of vertebrates. Journal of Zoological Systematics and Evolutionary Research, 2009, 47, 15-20.	0.6	3
153	HSP70 expression in the Copper butterfly <i>Lycaena tityrus</i> across altitudes and temperatures. Journal of Evolutionary Biology, 2009, 22, 172-178.	0.8	52
154	Local adaptation of stress related traits in <i>Drosophila buzzatii</i> and <i>Drosophila simulans</i> in spite of high gene flow. Journal of Evolutionary Biology, 2009, 22, 1111-1122.	0.8	25
155	Craniometric characteristics of polar bear skulls from two periods with contrasting levels of industrial pollution and sea ice extent. Journal of Zoology, 2009, 279, 321-328.	0.8	11
156	Complex patterns of geographic variation in heat tolerance and Hsp70 expression levels in the common frog Rana temporaria. Journal of Thermal Biology, 2009, 34, 49-54.	1.1	24
157	Depauperate genetic variability detected in the American and European bison using genomic techniques. Biology Direct, 2009, 4, 48.	1.9	17
158	Genetic similarity of polyploids: a new version of the computer program POPDIST (version 1.2.0) considers intraspecific genetic differentiation. Molecular Ecology Resources, 2009, 9, 1364-1368.	2.2	14
159	Divergence at neutral and non-neutral loci in Drosophila buzzatii populations and their hybrids. Evolutionary Ecology, 2008, 22, 593-605.	0.5	5
160	The impact of genetic parental distance on developmental stability and fitness in Drosophila buzzatii. Genetica, 2008, 134, 223-233.	0.5	4
161	New candidate genes for heat resistance in Drosophila melanogaster are regulated by HSF. Cell Stress and Chaperones, 2008, 13, 177-182.	1.2	12
162	Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout (Salmo trutta L.). BMC Genetics, 2008, 9, 12.	2.7	44

#	Article	IF	Citations
163	Genetic structure of the Danish red deer (Cervus elaphus). Biological Journal of the Linnean Society, 2008, 95, 688-701.	0.7	23
164	Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus). Heredity, 2008, 101, 247-259.	1.2	56
165	Spatially and temporally fluctuating selection at non-MHC immune genes: evidence from TAP polymorphism in populations of brown trout (Salmo trutta, L.). Heredity, 2008, 100, 79-91.	1.2	31
166	Linking Inbreeding Effects in Captive Populations with Fitness in the Wild: Release of Replicated <i>Drosophila melanogaster</i> Lines under Different Temperatures. Conservation Biology, 2008, 22, 189-199.	2.4	29
167	Genetic variability in the mitochondrial DNA of the Danish Pine marten. Journal of Zoology, 2008, 276, 168-175.	0.8	5
168	QTL mapping of inbreedingâ€related cold sensitivity and conditional lethality in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2008, 21, 1236-1244.	0.8	12
169	Nucleotide diversity in the <i>Hsp90</i> gene in natural populations of <i>Drosophila melanogaster </i> from Australia. Insect Molecular Biology, 2008, 17, 685-697.	1.0	11
170	QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chillâ€coma recovery in an intercontinental set of recombinant inbred lines of ⟨i⟩Drosophila melanogaster⟨ i⟩. Molecular Ecology, 2008, 17, 4570-4581.	2.0	59
171	Genetic analysis, breed assignment and conservation priorities of three native Danish horse breeds. Animal Genetics, 2008, 39, 496-505.	0.6	28
172	A major QTL affects temperature sensitive adult lethality and inbreeding depression in life span in Drosophila melanogaster. BMC Evolutionary Biology, 2008, 8, 297.	3.2	16
173	On the brink between extinction and persistence. Biology Direct, 2008, 3, 47.	1.9	14
174	Genetic and environmental correlates of morphological variation in a marine fish: the case of Baltic Sea herring (<i>Clupea harengus</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 389-400.	0.7	35
175	Metabolomic Signatures of Inbreeding at Benign and Stressful Temperatures in <i>Drosophila melanogaster</i>). Genetics, 2008, 180, 1233-1243.	1.2	71
176	Costs and benefits of cold acclimation in field-released <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 216-221.	3.3	212
177	Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2055-2061.	1.2	50
178	Local adaptation in brown trout early life-history traits: implications for climate change adaptability. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2859-2868.	1.2	165
179	Temperature-Induced Hormesis in Drosophila. , 2008, , 65-79.		10
180	Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 771-778.	1.2	67

#	Article	IF	Citations
181	Differences in cold and drought tolerance of high arctic and sub-arctic populations of Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Cryobiology, 2007, 55, 315-323.	0.3	45
182	Genetically controlled environmental variance for sternopleural bristles inDrosophila melanogaster– an experimental test of a heterogeneous variance model. Acta Agriculturae Scandinavica - Section A: Animal Science, 2007, 57, 196-201.	0.2	3
183	Consequences of Heat Hardening on a Field Fitness Component in Drosophila Depend on Environmental Temperature. American Naturalist, 2007, 169, 175-183.	1.0	152
184	Adaptive divergence in a high gene flow environment: Hsc70 variation in the European flounder (Platichthys flesus L.). Heredity, 2007, 99, 592-600.	1.2	147
185	BEHAVIORAL DIFFERENTIATION IN OVIPOSITION ACTIVITY IN DROSOPHILA BUZZATII FROM HIGHLAND AND LOWLAND POPULATIONS IN ARGENTINA: PLASTICITY OR THERMAL ADAPTATION?. Evolution; International Journal of Organic Evolution, 2007, 55, 738-747.	1.1	7
186	The consequences of the varianceâ€mean rescaling effect on effective population size. Oikos, 2007, 116, 769-774.	1.2	21
187	Weak population differentiation in northern European populations of the endangered anadromous clupeid Alosa fallax. Journal of Fish Biology, 2007, 71, 461-469.	0.7	5
188	Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. Journal of Evolutionary Biology, 2007, 20, 1624-1636.	0.8	127
189	X-linked QTL for knockdown resistance to high temperature in Drosophila melanogaster. Insect Molecular Biology, 2007, 16, 509-513.	1.0	17
190	Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 inDrosophila melanogaster. Molecular Ecology, 2007, 16, 3274-3284.	2.0	53
191	Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder (<i>Platichthys flesus</i> L.). Molecular Ecology, 2007, 16, 3104-3118.	2.0	125
192	Adaptive differences in gene expression in European flounder (Platichthys flesus). Molecular Ecology, 2007, 16, 4674-4683.	2.0	111
193	Genetic evaluation of the captive breeding program of the Persian wild ass. Journal of Zoology, 2007, 272, 349-357.	0.8	22
194	Limitations in the use of Drosophila melanogaster as a model host for gram-positive bacterial infection. Letters in Applied Microbiology, 2007, 44, 218-223.	1.0	14
195	Post-eclosion decline in â€^knock-down' thermal resistance and reduced effect of heat hardening in Drosophila melanogaster. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 146, 355-359.	0.8	25
196	Longevity and the stress response in Drosophila. Experimental Gerontology, 2007, 42, 153-159.	1.2	117
197	Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster. Experimental Gerontology, 2007, 42, 1123-1129.	1.2	90
198	Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology, 2007, 53, 1218-1232.	0.9	232

#	Article	IF	Citations
199	Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodiversity and Conservation, 2007, 16, 4147-4163.	1.2	104
200	Integrating population genetics and conservation biology: merging theoretical, experimental and applied approaches (Potsdam, Germany). Conservation Genetics, 2007, 8, 1267-1268.	0.8	3
201	Heat-induced hormesis in longevity of two sibling Drosophila species. Biogerontology, 2007, 8, 315-325.	2.0	38
202	Studying stress responses in the post-genomic era: its ecological and evolutionary role. Journal of Biosciences, 2007, 32, 447-456.	0.5	57
203	Effects of temperature and maternal and grandmaternal age on wing shape in parthenogenetic Drosophila mercatorum. Journal of Thermal Biology, 2007, 32, 59-65.	1.1	23
204	Morphological consequences of range fragmentation and population decline on the endangered lberian lynx (<i>Lynx pardinus</i>). Journal of Zoology, 2006, 268, 73-86.	0.8	28
205	Developmental instability, hybridization and heterozygosity in stick insects of the genus Bacillus (Insecta; Phasmatodea) with different modes of reproduction. Biological Journal of the Linnean Society, 2006, 87, 249-259.	0.7	14
206	No evidence of past bottlenecks in two Danish mustelids: results of craniometric and genetic studies in time and space. Biological Journal of the Linnean Society, 2006, 88, 541-553.	0.7	10
207	Genetic structure of the European polecat (Mustela putorius) and its implication for conservation strategies. Journal of Zoology, 2006, 270, 060606025751021-???.	0.8	21
208	Genetic structure within and among regional populations of the Eurasian badger (Meles meles) from Denmark and the Netherlands. Journal of Zoology, 2006, 271, 060818015547004-???.	0.8	9
209	Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Molecular Ecology, 2006, 15, 2567-2575.	2.0	90
210	Developmental instability as an estimator of genetic stress. Heredity, 2006, 96, 122-127.	1.2	50
211	Climatic adaptation of Drosophila buzzatii populations in southeast Australia. Heredity, 2006, 96, 479-486.	1.2	49
212	Altitudinal patterns for longevity, fecundity and senescence in Drosophila buzzatii. Genetica, 2006, 128, 81-93.	0.5	40
213	Spatial and temporal genetic differentiation and effective population size of brown trout (Salmo) Tj ETQq1 1 0.78	4314 rgBT 0.8	 <mark>Q</mark> verlock
214	Kin competition and the evolution of dispersal in an individual-based model. Ecological Modelling, 2006, 192, 658-666.	1.2	51
215	Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta. Journal of Insect Physiology, 2006, 52, 951-959.	0.9	52
216	Dopamine levels in the mosquito Aedes aegypti during adult development, following blood feeding and in response to heat stress. Journal of Insect Physiology, 2006, 52, 1163-1170.	0.9	35

#	Article	IF	Citations
217	Developmental time and size-related traits in Drosophila buzzatii along an altitudinal gradient from Argentina. Hereditas, 2006, 143, 77-83.	0.5	36
218	Inbreeding by Environmental Interactions Affect Gene Expression in Drosophila melanogaster. Genetics, 2006, 173, 1329-1336.	1.2	75
219	Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiological Entomology, 2006, 31, 328-335.	0.6	77
220	Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R205-R212.	0.9	170
221	Phototransduction genes are up-regulated in a global gene expression study of Drosophila melanogaster selected for heat resistance. Cell Stress and Chaperones, 2006, 11, 325.	1.2	23
222	Acclimation, heat shock and hardeningâ€"a response from evolutionary biology. Journal of Thermal Biology, 2005, 30, 255-257.	1.1	57
223	Characterization of microsatellite loci in the stick insects Bacillus rossius rossius, Bacillus rossius redtenbacheri and Bacillus whitei (Insecta: Phasmatodea). Molecular Ecology Notes, 2005, 5, 576-578.	1.7	4
224	Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World. Journal of Evolutionary Biology, 2005, 18, 829-837.	0.8	143
225	A test of quantitative genetic theory using Drosophila- effects of inbreeding and rate of inbreeding on heritabilities and variance components. Journal of Evolutionary Biology, 2005, 18, 763-770.	0.8	62
226	Effects of inbreeding and rate of inbreeding in Drosophila melanogaster- Hsp70 expression and fitness. Journal of Evolutionary Biology, 2005, 18, 756-762.	0.8	84
227	Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. Journal of Evolutionary Biology, 2005, 18, 789-803.	0.8	260
228	Heat stress and age induced maternal effects on wing size and shape in parthenogenetic Drosophila mercatorum. Journal of Evolutionary Biology, 2005, 18, 884-892.	0.8	21
229	Environmental stress, adaptation and evolution: an overview. Journal of Evolutionary Biology, 2005, 18, 744-749.	0.8	258
230	Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Molecular Ecology, 2005, 14, 3219-3234.	2.0	192
231	Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua). Molecular Ecology, 2005, 15, 321-331.	2.0	107
232	Stocking impact and temporal stability of genetic composition in a brackish northern pike population (Esox lucius L.), assessed using microsatellite DNA analysis of historical and contemporary samples. Heredity, 2005, 95, 136-143.	1.2	48
233	The effect of maternal and grandmaternal age in benign and high temperature environments. Experimental Gerontology, 2005, 40, 988-996.	1.2	17
234	Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Journal of Insect Physiology, 2005, 51, 1173-1182.	0.9	224

#	Article	IF	CITATIONS
235	Role of HSF activation for resistance to heat, cold and high-temperature knock-down. Journal of Insect Physiology, 2005, 51, 1320-1329.	0.9	76
236	Maternal and grandmaternal age effects on developmental instability and wing size in parthenogenetic Drosophila mercatorum. Biogerontology, 2005, 6, 61-69.	2.0	21
237	Present and past microsatellite variation and assessment of genetic structure in Eurasian badger (Meles meles) in Denmark. Journal of Zoology, 2005, 265, 387-394.	0.8	14
238	Genome-Wide Analysis on Inbreeding Effects on Gene Expression in Drosophila melanogaster. Genetics, 2005, 171, 157-167.	1.2	93
239	Spring-spawning herring (Clupea harengus L.) in the southwestern Baltic Sea: do they form genetically distinct spawning waves?. ICES Journal of Marine Science, 2005, 62, 1065-1075.	1.2	25
240	Full genome gene expression analysis of the heat stress response in Drosophila melanogaster. Cell Stress and Chaperones, 2005, 10, 312.	1.2	223
241	Genetic evidence for population expansion in Hydrotaea irritans (Fallen) (Diptera: Muscidae). Journal of Zoological Systematics and Evolutionary Research, 2004, 42, 257-261.	0.6	0
242	Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster. Molecular Ecology, 2004, 13, 3585-3594.	2.0	55
243	Down regulation of Hsp70 expression level prolongs the duration of heat-induced male sterility in Drosophila buzzatii. Functional Ecology, 2004, 18, 365-370.	1.7	13
244	Microsatellite DNA analysis of northern pike (Esox lucius L.) populations: insights into the genetic structure and demographic history of a genetically depauperate species. Biological Journal of the Linnean Society, 2004, 84, 91-101.	0.7	32
245	Variation of life-history and morphometrical traits in Drosophila buzzatii and Drosophila simulans collected along an altitudinal gradient from a Canary island. Biological Journal of the Linnean Society, 2004, 84, 119-136.	0.7	29
246	Heat and cold-induced male sterility in Drosophila buzzatii: genetic variation among populations for the duration of sterility. Heredity, 2004, 92, 257-262.	1.2	45
247	Genetic Differentiation among Danish Brown Trout (Salmo trutta) Populations. Hereditas, 2004, 118, 177-185.	0.5	43
248	Chromosomal Variation, Segregation and Sex Determination in Hydrotaea Meridionalis (Diptera:) Tj ETQq0 0 0 rg	BT/Qverlo	ock 10 Tf 50
249	Relationship Among Hydrotaea Species Based on Allozymes, Karyotype and Morphology (Diptera:) Tj ETQq1 1 0.7	784314 rg	BT ₁ /Overlo <mark>ck</mark>
250	Heat-Shock Resistance in Drosophila Populations: Analysis of Variation in Reciprocal Cross Progeny. Hereditas, 2004, 124, 47-55.	0.5	19
251	Expression of the Heat-Shock Protein HSP70 in Drosophila Buzzatii Lines Selected for Thermal Resistance. Hereditas, 2004, 131, 155-164.	0.5	110
252	Analysis of Applications DNA from Old Scale Samples: Technical Aspects, and Perspectives for Conservation. Hereditas, 2004, 130, 265-276.	0.5	82

#	Article	IF	Citations
253	Extremely Low Mitochondrial DNA Control-Region Sequence Variation in the Otter Lutra Lutra Population of Denmark. Hereditas, 2004, 130, 331-336.	0.5	31
254	Chromosomal and Cytoplasmic Analysis of Heat Shock Resistance in Natural Populations of Drosophila Melanogaster. Hereditas, 2004, 132, 143-149.	0.5	7
255	Developmental Time, Body Size and Wing Loading in Drosophila Buzzatii from Lowland and Highland Populations in Argentina. Hereditas, 2004, 135, 35-40.	0.5	43
256	Ecologically relevant stress resistance: from microarrays and quantitative trait loci to candidate genes — A research plan and preliminary results usingDrosophila as a model organism and climatic and genetic stress as model stresses. Journal of Biosciences, 2004, 29, 503-511.	0.5	12
257	Effects of relative emergence time on heat stress resistance traits, longevity and hsp70 expression level in Drosophila melanogaster. Journal of Thermal Biology, 2004, 29, 195-203.	1.1	19
258	The increase of fluctuating asymmetry in a monoclonal strain of collembolans after chemical exposure—discussing a new method for estimating the environmental variance. Ecological Indicators, 2004, 4, 73-81.	2.6	20
259	Hsp72 is present in plasma from Holstein-Friesian dairy cattle, and the concentration level is repeatable across days and age classes. Cell Stress and Chaperones, 2004, 9, 143.	1.2	39
260	Genetic variability in Danish polecats Mustela putorius as assessed by microsatellites. Wildlife Biology, 2004, 10, 25-33.	0.6	10
261	Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology, 2003, 4, 149-156.	2.0	254
262	Title is missing!. Conservation Genetics, 2003, 4, 453-465.	0.8	61
263	Fragmentation by weirs in a riverine system: A study of genetic variation in time and space among populations of European grayling (Thymallus thymallus) in a Danish river system. Conservation Genetics, 2003, 4, 735-747.	0.8	114
264	Mild heat stress at a young age inDrosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life. Journal of Genetics, 2003, 82, 89-94.	0.4	43
265	Heat-induced expression of a molecular chaperone decreases by selecting for long-lived individuals. Experimental Gerontology, 2003, 38, 673-681.	1.2	36
266	Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. Journal of Insect Physiology, 2003, 49, 719-726.	0.9	128
267	Genetic variation in desiccation tolerance of Dendrobaena octaedra cocoons originating from different climatic regions. Soil Biology and Biochemistry, 2003, 35, 119-124.	4.2	18
268	Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology, 2003, 28, 175-216.	1.1	896
269	Genetic structure in otter (Lutra lutra) populations in Europe: implications for conservation. Animal Conservation, 2003, 6, 93-100.	1.5	53
270	Morphological variability and developmental instability in subpopulations of the Eurasian badger (Meles meles) in Denmark. Journal of Biogeography, 2003, 30, 949-958.	1.4	15

#	Article	IF	Citations
271	DNA sequence variation and latitudinal associations in hsp23 , hsp26 and hsp27 from natural populations of Drosophila melanogaster. Molecular Ecology, 2003, 12, 2025-2032.	2.0	108
272	Comments on: Evolutionary and statistical properties of three genetic distances (Kalinowski, 2002). Molecular Ecology, 2003, 12, 2275-2277.	2.0	2
273	Longâ€ŧerm temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Molecular Ecology, 2003, 12, 3123-3135.	2.0	118
274	The evolutionary and ecological role of heat shock proteins. Ecology Letters, 2003, 6, 1025-1037.	3.0	1,132
275	Genetic differentiation of foxes (Vulpes vulpes) analysed by means of craniometry and isozymes. Journal for Nature Conservation, 2003, 11, 109-116.	0.8	15
276	TEMPERATURE-INDUCED SHIFTS IN ASSOCIATIONS OF LONGEVITY WITH BODY SIZE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2002, 56, 299.	1.1	6
277	The detrimental acclimation hypothesis. Trends in Ecology and Evolution, 2002, 17, 407-408.	4.2	37
278	Decreased heat-shock resistance and down-regulation of Hsp70 expression with increasing age in adultDrosophila melanogaster. Functional Ecology, 2002, 16, 379-384.	1.7	63
279	Genetic variation in original and colonizing Drosophila buzzatii populations analysed by microsatellite loci isolated with a new PCR screening method. Molecular Ecology, 2002, 11, 181-190.	2.0	30
280	Male reproductive competition in spawning aggregations of cod (Gadus morhua, L.). Molecular Ecology, 2002, 11, 91-102.	2.0	123
281	Natural adaptation to environmental stress via physiological clock-regulation of stress resistance in Drosophila. Ecology Letters, 2002, 5, 16-19.	3.0	44
282	Longevity and resistance to cold stress in coldâ€stress selected lines and their controls inDrosophila melanogaster. Journal of Evolutionary Biology, 2002, 15, 775-783.	0.8	44
283	Variation in resistance and acclimation to low-temperature stress among three geographical strains of Drosophila melanogaster. Journal of Thermal Biology, 2002, 27, 337-344.	1.1	38
284	Effect of low stressful temperature on genetic variation of five quantitative traits in Drosophila melanogaster. Heredity, 2002, 89, 70-75.	1.2	38
285	TEMPERATURE-INDUCED SHIFTS IN ASSOCIATIONS OF LONGEVITY WITH BODY SIZE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2002, 56, 299-306.	1.1	69
286	Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: down regulation of Hsp70 expression and variation in heat stress resistance traits. Functional Ecology, 2001, 15, 289-296.	1.7	239
287	Genetic variation of morphological traits in Drosophila melanogaster under poor nutrition: isofemale lines and offspring–parent regression. Heredity, 2001, 86, 363-369.	1.2	35
288	Conservation genetics of peripheral populations of the mygalomorph spider Atypus affinis (Atypidae) in northern Europe. Molecular Ecology, 2001, 10, 1133-1142.	2.0	34

#	Article	IF	CITATIONS
289	A New Method for Estimating Environmental Variability for Clonal Organisms, and the Use of Fluctuating Asymmetry as an Indicator of Developmental Instability. Journal of Theoretical Biology, 2001, 210, 407-410.	0.8	20
290	Elucidation of the Molecular Basis of a Null Allele in a Rainbow Trout Microsatellite. Marine Biotechnology, 2001, 3, 0555-0560.	1.1	18
291	Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. Journal of Insect Physiology, 2001, 47, 1301-1307.	0.9	168
292	Comments to paper by S. Rattan: applying hormesis in aging research and therapy â€" a perspective from evolutionary biology. Human and Experimental Toxicology, 2001, 20, 305-308.	1.1	5
293	BEHAVIORAL DIFFERENTIATION IN OVIPOSITION ACTIVITY IN DROSOPHILA BUZZATII FROM HIGHLAND AND LOWLAND POPULATIONS IN ARGENTINA: PLASTICITY OR THERMAL ADAPTATION?. Evolution; International Journal of Organic Evolution, 2001, 55, 738.	1.1	73
294	Genetic consequences of population decline in the European otter (Lutra lutra): an assessment of microsatellite DNA variation in Danish otters from 1883 to 1993. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1775-1781.	1.2	71
295	Mitochondrial DNA Variability in Italian and East European Wolves: Detecting the Consequences of Small Population Size and Hybridization. Conservation Biology, 2000, 14, 464-473.	2.4	172
296	Variation in body size and life history traits in Drosophila aldrichi and D. buzzatii from a latitudinal cline in eastern Australia. Heredity, 2000, 85, 423-433.	1.2	55
297	Variation in the expression of Hsp70, the major heat-shock protein, and thermotolerance in larval and adult selection lines of Drosophila melanogaster. Journal of Thermal Biology, 2000, 25, 443-450.	1.1	48
298	Craniometrical variability and developmental stability. Two useful tools for assessing the population viability of Eurasian otter (Lutra lutra) populations in Europe Biological Journal of the Linnean Society, 2000, 70, 309-323.	0.7	26
299	Effect of the 1990 die-off in the northern Italian seas on the developmental stability of the striped dolphin Stenella coeruleoalba (Meyen, 1833). Biological Journal of the Linnean Society, 2000, 71, 61-70.	0.7	1
300	Allozyme variation in the Eurasian badger Meles meles in Denmark. Journal of Zoology, 2000, 252, 544-547.	0.8	8
301	Half-sib Analysis of three Morphological Traits inDrosophila MelanogasterUnder Poor Nutrition. Hereditas, 2000, 133, 59-63.	0.5	23
302	High stressful temperature and genetic variation of five quantitative traits in Drosophila melanogaster. Genetica, 2000, 110, 79-85.	0.5	31
303	EFFECT OF STRESSFUL AND NONSTRESSFUL GROWTH TEMPERATURES ON VARIATION OF STERNOPLEURAL BRISTLE NUMBER IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2000, 54, 1444.	1.1	33
304	Computer note. POPDIST, version 1.1.1: a program to calculate population genetic distance and identity measures. Journal of Heredity, 2000, 91, 178-179.	1.0	28
305	Modelling the optimal conservation of interacting species. Ecological Modelling, 2000, 125, 123-144.	1.2	81
306	Genetic Variation in Time and Space: Microsatellite Analysis of Extinct and Extant Populations of Atlantic Salmon. Evolution; International Journal of Organic Evolution, 1999, 53, 261.	1.1	43

#	Article	IF	CITATIONS
307	A genetic analysis of the relationship between life-history variation and heat-shock tolerance in Drosophila buzzatii. Heredity, 1999, 83, 46-53.	1.2	45
308	Drosophila melanogaster is polymorphic for a specific repeated (CATA) sequence in the regulatory region of hsp23. Gene, 1999, 236, 243-250.	1.0	14
309	Population differentiation through mutation and drift – a comparison of genetic identity measures. Genetica, 1998, 102/103, 545-558.	0.5	20
310	Stress temperatures and quantitative variation in Drosophila melanogaster. Heredity, 1998, 81, 246-253.	1.2	64
311	Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adultDrosophila melanogaster. Functional Ecology, 1998, 12, 786-793.	1.7	187
312	Selection for Knockdown Resistance to Heat in Drosophila melanogaster at High and Low Larval Densities. Evolution; International Journal of Organic Evolution, 1998, 52, 619.	1,1	30
313	SELECTION FOR KNOCKDOWN RESISTANCE TO HEAT IN <i>DROSOPHILA MELANOGASTER</i> AT HIGH AND LOW LARVAL DENSITIES. Evolution; International Journal of Organic Evolution, 1998, 52, 619-625.	1.1	46
314	Stress temperatures and quantitative variation in Drosophila melanogaster. Heredity, 1998, 81, 246-253.	1.2	7
315	Population differentiation through mutation and drift $\hat{a} \in $ " a comparison of genetic identity measures. Contemporary Issues in Genetics and Evolution, 1998, , 545-558.	0.9	5
316	Effects of extreme temperatures on phenotypic variation and developmental stability in Drosophila melanogaster and Drosophila buzzatii. Biological Journal of the Linnean Society, 1997, 61, 117-126.	0.7	28
317	Estimating heritability in a threshold trait: heat-shock tolerance in Drosophila buzzatii. Heredity, 1997, 79, 252-259.	1.2	33
318	A combined DNA-microsatellite and isozyme analysis of the population structure of the harbour porpoise in Danish waters and West Greenland. Heredity, 1997, 78, 270-276.	1.2	39
319	Effects of inbreeding in three life stages of Drosophila buzzatii after embryos were exposed to a high temperature stress. Heredity, 1997, 78, 410-416.	1.2	48
320	Effects of extreme temperatures on phenotypic variation and developmental stability inDrosophila melanogasterandDrosophila buzzatii. Biological Journal of the Linnean Society, 1997, 61, 117-126.	0.7	51
321	Genetic Diversity of Lepilemur mustelinus ruficaudatus , a Nocturnal Lemur of Madagascar. Conservation Biology, 1997, 11, 491-497.	2.4	9
322	Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Molecular Ecology, 1997, 6, 487-492.	2.0	171
323	High-temperature stress and the evolution of thermal resistance in Drosophila. Exs, 1997, 83, 175-190.	1.4	42
324	A combined DNA-microsatellite and isozyme analysis of the population structure of the harbour porpoise in Danish waters and West Greenland. Heredity, 1997, 78, 270-276.	1.2	2

#	Article	IF	Citations
325	Effects of inbreeding in three life stages of Drosophila buzzatii after embryos were exposed to a high temperature stress. Heredity, 1997, 78, 410-416.	1.2	6
326	Distribution, Abundance and Oviposition Patterns of Four Coexisting Chiastocheta Species (Diptera:) Tj ETQq0	0 0 [gBT /0	Overlock 10 Tf
327	Drought Stress and Inbreeding Depression in Lychnis flos-cuculi (Caryophyllaceae). Evolution; International Journal of Organic Evolution, 1996, 50, 1119.	1.1	38
328	Temporal Variation in Mitochondrial DNA Haplotype Frequencies in a Brown Trout (Salmo trutta L.) Population that Shows Stability in Nuclear Allele Frequencies. Evolution; International Journal of Organic Evolution, 1996, 50, 454.	1.1	10
329	Selection for Heat-Shock Resistance in Larval and in Adult Drosophila buzzatii: Comparing Direct and Indirect Responses. Evolution; International Journal of Organic Evolution, 1996, 50, 2354.	1.1	33
330	MHC and mate selection in humans?. Trends in Ecology and Evolution, 1996, 11, 24.	4.2	21
331	SELECTION FOR HEAT-SHOCK RESISTANCE IN LARVAL AND IN ADULT <i>DROSOPHILA BUZZATII</i> COMPARING DIRECT AND INDIRECT RESPONSES. Evolution; International Journal of Organic Evolution, 1996, 50, 2354-2359.	1.1	32
332	TEMPORAL VARIATION IN MITOCHONDRIAL DNA HAPLOTYPE FREQUENCIES IN A BROWN TROUT (<i>SALMO) International Journal of Organic Evolution, 1996, 50, 454-457.</i>	Tj ETQq0 (1.1	0 0 rgBT /Over 21
333	DROUGHT STRESS AND INBREEDING DEPRESSION IN <i>LYCHNIS FLOS-CUCULI</i> (CARYOPHYLLACEAE). Evolution; International Journal of Organic Evolution, 1996, 50, 1119-1126.	1.1	64
334	A Maximum-Likelihood Estimator of the Genetic Identity betweenn Polyploid Species. Journal of Theoretical Biology, 1996, 179, 51-54.	0.8	16
335	Genetic structure of European populations of Salmo salar L. (Atlantic salmon) inferred from mitochondrial DNA. Heredity, 1996, 77, 351-358.	1.2	44
336	A hierarchical analysis of genetic structure and variability in patchily distributed coexisting Chiastocheta species (Diptera: Anthomyiidae). Heredity, 1996, 76, 437-448.	1.2	15
337	Genetic differentiation among Danish brown trout populations, as detected by RFLP analysis of PCR amplified mitochondrial DNA segments. Journal of Fish Biology, 1996, 48, 422-436.	0.7	46
338	Acclimation and Selection for Increased Resistance to Thermal Stress in <i>Drosophila buzzatii</i> Genetics, 1996, 142, 471-479.	1.2	48
339	Assessment of the stocked or wild origin of anadromous brown trout (Salmo trutta L.) in a Danish river system, using mitochondrial DNA RFLP analysis. Molecular Ecology, 1995, 4, 189-198.	2.0	42
340	Inbreeding depression in Lychnis flos-cuculi (Caryophyllaceae): effects of different levels of inbreeding. Journal of Evolutionary Biology, 1995, 8, 589-600.	0.8	28
341	Heat-shock tolerance and inbreeding in Drosophila buzzatii. Heredity, 1995, 74, 157-163.	1.2	46
342	Genetic identity combining mutation and drift. Heredity, 1995, 74, 607-615.	1.2	18

#	Article	IF	Citations
343	Resistance to thermal stress in adult Drosophila buzzatii: acclimation and variation among populations. Biological Journal of the Linnean Society, 1995, 56, 505-515.	0.7	33
344	Resistance to thermal stress in preadult Drosophila buzzatii: variation among populations and changes in relative resistance across life stages. Biological Journal of the Linnean Society, 1995, 56, 517-531.	0.7	84
345	The optimization of biodiversity conservation. Biological Conservation, 1995, 71, 205-207.	1.9	94
346	Resistance to thermal stress in adult Drosophila buzzatii: acclimation and variation among populations. Biological Journal of the Linnean Society, 1995, 56, 505-515.	0.7	2
347	Resistance to thermal stress in preadult Drosophila buzzatii: variation among populations and changes in relative resistance across life stages. Biological Journal of the Linnean Society, 1995, 56, 517-531.	0.7	5
348	Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. Journal of Evolutionary Biology, 1994, 7, 39-49.	0.8	155
349	Genotypic variation for reproductive characters, and the influence of pollen-ovule ratio on selfing rate in rape seed (Brassica napus). Journal of Evolutionary Biology, 1994, 7, 599-607.	0.8	41
350	Inbreeding depression and mating-distance dependent offspring fitness in large and small populations of Lychnis flos-cuculi (Caryophyllaceae). Journal of Evolutionary Biology, 1994, 7, 609-622.	0.8	63
351	On the Origin of Polyploid Parthenogenetic Races in the Weevil Polydrusus mollis (Coleoptera:) Tj ETQq1 1 0.78	4314 rgBT	/Overlock 10
352	Genetic variation for resistance and acclimation to high temperature stress in Drosophila buzzatii. Biological Journal of the Linnean Society, 1994, 52, 83-92.	0.7	74
353	Genetic variation for selfing rate and the dependence of selfing rate on mating history in Brassica napus (rape seed). Heredity, 1994, 72, 570-573.	1.2	13
354	Costs and Benefits of Activation of the Heat-Shock Response in Drosophila melanogaster. Functional Ecology, 1994, 8, 730.	1.7	234
355	On the Application of Birth-Death Models in Conservation Biology. Conservation Biology, 1994, 8, 574-576.	2.4	4
356	Biodiversity conservation: Reserve optimization or loss minimization?. Trends in Ecology and Evolution, 1993, 8, 417.	4.2	14
357	Partial selfing as an optimal mating strategy. Heredity, 1992, 69, 289-295.	1.2	33
358	Evolution of parthenogenesis in the Otiorhynchus scaber complex. Heredity, 1992, 68, 391-397.	1.2	41
359	A New Measure of Genetic Identity between Populations of Sexual and Asexual Species. Evolution; International Journal of Organic Evolution, 1991, 45, 1685.	1,1	12
360	A NEW MEASURE OF GENETIC IDENTITY BETWEEN POPULATIONS OF SEXUAL AND ASEXUAL SPECIES. Evolution; International Journal of Organic Evolution, 1991, 45, 1685-1694.	1.1	29

#	Article	IF	CITATIONS
361	Intraspecific competition and components of niche width in age structured populations. Theoretical Population Biology, 1990, 37, 291-319.	0.5	4
362	The Coherence of Cole's Result and Williams' Refinement of Lack's Principle. Oikos, 1989, 56, 416.	1.2	4
363	Evolution and intraspecific competition. III. One-locus theory for small additive gene effects and multidimensional resource qualities. Theoretical Population Biology, 1987, 31, 33-46.	0.5	15
364	Variation in chromosome number in the sheep headflyHydrotaea irritans (Fallen) (Diptera: Muscidae). Experientia, 1987, 43, 447-448.	1.2	3
365	Allozyme variation in rye, Secale cereale L Theoretical and Applied Genetics, 1987, 74, 560-565.	1.8	24
366	Coevolution and Invasion in Competitive Guilds. American Naturalist, 1985, 126, 505-520.	1.0	12
367	Evolution and intraspecific exploitative competition. II. A two-locus model for additive gene effects. Theoretical Population Biology, 1984, 26, 228-264.	0.5	36
368	Evolution and intraspecific exploitative competition I. One-locus theory for small additive gene effects. Theoretical Population Biology, 1980, 18, 297-313.	0.5	97
369	Analysis of intercellular distributions of chromatid aberrations. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1976, 34, 427-435.	0.4	15
370	Deterministic and stochastic models of the negative binomial distribution and the analysis of chromosomal aberrations in human leukocytes. Biometrische Zeitschrift, 1976, 18, 427-451.	0.4	22
371	Spatio-temporal population genetics of the Danish pine marten (Martes martes). Biological Journal of the Linnean Society, 0, 93, 457-464.	0.7	22
372	Patterns of genetic variation in isolated Danish populations of the endangered butterfly Euphydryas aurinia. Biological Journal of the Linnean Society, 0, 95, 677-687.	0.7	28
373	Genetic variability and evolution of cold-tolerance. , 0, , 276-296.		9
374	Estimating heritability in a threshold trait: heat-shock tolerance in Drosophila buzzatii. , 0, .		4