Carl E Wieman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7874853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perspectives on Active Learning: Challenges for Equitable Active Learning Implementation. Journal of Chemical Education, 2022, 99, 1691-1699.	2.3	16
2	FINDING THE MISSING NONPOLYPOID (FLAT AND DEPRESSED) COLORECTAL NEOPLASM (NP-CRN): A NEW EDUCATIONAL STRATEGY FOR VISUAL DISCRIMINATION BASED ON EXPERT PERFORMANCE. Gastrointestinal Endoscopy, 2022, 95, AB177.	1.0	1
3	Evaluating the problem-solving skills of graduating chemical engineering students. Education for Chemical Engineers, 2021, 34, 68-77.	4.8	10
4	Mixed results from a multiple regression analysis of supplemental instruction courses in introductory physics. PLoS ONE, 2021, 16, e0249086.	2.5	2
5	Validated diagnostic test for introductory physics course placement. Physical Review Physics Education Research, 2021, 17, .	2.9	3
6	Response to "Interpret with Caution: COPUS Instructional Styles May Not Differ in Terms of Practices That Support Student Learning,―by Melody McConnell, Jeffrey Boyer, Lisa M. Montplaisir, Jessie B. Arneson, Rachel L. S. Harding, Brian Farlow, and Erika G. Offerdahl. CBE Life Sciences Education, 2021, 20. le1.	2.3	4
7	A Detailed Characterization of the Expert Problem-Solving Process in Science and Engineering: Guidance for Teaching and Assessment. CBE Life Sciences Education, 2021, 20, ar43.	2.3	24
8	Evidence-Based Principles for Worksheet Design. Physics Teacher, 2021, 59, 402-403.	0.3	0
9	Developing scientific decision making by structuring and supporting student agency. Physical Review Physics Education Research, 2020, 16, .	2.9	30
10	Template for teaching and assessment of problem solving in introductory physics. Physical Review Physics Education Research, 2020, 16, .	2.9	14
11	What factors impact student performance in introductory physics?. PLoS ONE, 2020, 15, e0244146.	2.5	4
12	Characterizing the mathematical problem-solving strategies of transitioning novice physics students. Physical Review Physics Education Research, 2020, 16, .	2.9	3
13	What factors impact student performance in introductory physics?. , 2020, 15, e0244146.		0
14	What factors impact student performance in introductory physics?. , 2020, 15, e0244146.		0
15	What factors impact student performance in introductory physics?. , 2020, 15, e0244146.		0
16	What factors impact student performance in introductory physics?. , 2020, 15, e0244146.		0
17	Expertise in University Teaching & the Implications for Teaching Effectiveness, Evaluation & Training. Daedalus, 2019, 148, 47-78.	1.8	22
18	Exploring bias in mechanical engineering students' perceptions of classmates. PLoS ONE, 2019, 14, e0212477.	2.5	4

CARL E WIEMAN

#	Article	IF	CITATIONS
19	Demographic gaps or preparation gaps?: The large impact of incoming preparation on performance of students in introductory physics. Physical Review Physics Education Research, 2019, 15, .	2.9	70
20	Tools for Science Inquiry Learning: Tool Affordances, Experimentation Strategies, and Conceptual Understanding. Journal of Science Education and Technology, 2018, 27, 215-235.	3.9	30
21	Preparing physics students for being marooned on a desert island (and not much else). Physics Teacher, 2017, 55, 68-68.	0.3	1
22	Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning. CBE Life Sciences Education, 2017, 16, ar56.	2.3	194
23	Value added or misattributed? A multi-institution study on the educational benefit of labs for reinforcing physics content. Physical Review Physics Education Research, 2017, 13, .	2.9	63
24	The Connection Between Teaching Methods and Attribution Errors. Educational Psychology Review, 2016, 28, 645-648.	8.4	4
25	Concepts first, jargon second improves student articulation of understanding. Biochemistry and Molecular Biology Education, 2016, 44, 12-19.	1.2	24
26	The half empty question for socio-cognitive interventions Journal of Educational Psychology, 2016, 108, 397-404.	2.9	26
27	Examining and contrasting the cognitive activities engaged in undergraduate research experiences and lab courses. Physical Review Physics Education Research, 2016, 12, .	2.9	38
28	Comment on "Benefits of completing homework for students with different aptitudes in an introductory electricity and magnetism course― Physical Review Physics Education Research, 2016, 12,	2.9	2
29	Analyzing the many skills involved in solving complex physics problems. American Journal of Physics, 2015, 83, 459-467.	0.7	47
30	Comparative Cognitive Task Analyses of Experimental Science and Instructional Laboratory Courses. Physics Teacher, 2015, 53, 349-351.	0.3	73
31	Teaching critical thinking. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11199-11204.	7.1	135
32	Educational transformation in upper-division physics: The Science Education Initiative model, outcomes, and lessons learned. Physical Review Physics Education Research, 2015, 11, .	1.7	29
33	Editorial for special issue on concept inventories in computing. Computer Science Education, 2014, 24, 250-252.	3.7	3
34	Physics Exams that Promote Collaborative Learning. Physics Teacher, 2014, 52, 51-53.	0.3	37
35	The Teaching Practices Inventory: A New Tool for Characterizing College and University Teaching in Mathematics and Science. CBE Life Sciences Education, 2014, 13, 552-569.	2.3	102
36	The Similarities Between Research in Education and Research in the Hard Sciences. Educational Researcher, 2014, 43, 12-14.	5.4	18

CARL E WIEMAN

#	Article	IF	CITATIONS
37	Large-scale comparison of science teaching methods sends clear message. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8319-8320.	7.1	185
38	Psychological insights for improved physics teaching. Physics Today, 2014, 67, 43-49.	0.3	55
39	Making On-line Science Course Materials Easily Translatable and Accessible Worldwide: Challenges and Solutions. Journal of Science Education and Technology, 2012, 21, 1-10.	3.9	12
40	Development and Validation of Instruments to Measure Learning of Expert‣ike Thinking. International Journal of Science Education, 2011, 33, 1289-1312.	1.9	282
41	Improved Learning in a Large-Enrollment Physics Class. Science, 2011, 332, 862-864.	12.6	857
42	Student Interpretations of Equations Related to the First Law of Thermodynamics. Journal of Chemical Education, 2010, 87, 750-755.	2.3	63
43	Galvanizing Science Departments. Science, 2009, 325, 1181-1181.	12.6	5
44	Modifying and Validating the Colorado Learning Attitudes about Science Survey for Use in Chemistry. Journal of Chemical Education, 2008, 85, 1435.	2.3	120
45	Oersted Medal Lecture 2007: Interactive simulations for teaching physics: What works, what doesn't, and why. American Journal of Physics, 2008, 76, 393-399.	0.7	64
46	PhET: Simulations That Enhance Learning. Science, 2008, 322, 682-683.	12.6	252
47	Why Not Try a Scientific Approach to Science Education?. Change, 2007, 39, 9-15.	0.5	132
48	A powerful tool for teaching science. Nature Physics, 2006, 2, 290-292.	16.7	43
49	Formation of Bright Matter-Wave Solitons during the Collapse of Attractive Bose-Einstein Condensates. Physical Review Letters, 2006, 96, 170401.	7.8	416
50	PhET: Interactive Simulations for Teaching and Learning Physics. Physics Teacher, 2006, 44, 18-23.	0.3	199
51	Minimize Your Mistakes by Learning from Those of Others. Physics Teacher, 2005, 43, 252-253.	0.3	0
52	The Surprising Impact of Seat Location on Student Performance. Physics Teacher, 2005, 43, 30-33.	0.3	56
53	Bose–Einstein Condensation in a Dilute Gas: The First 70 Years and some Recent Experiments (Nobel) Tj ETQq	1 1.0.7843 2.1	814 rgBT /C
54	Atom–molecule coherence in a Bose–Einstein condensate. Nature, 2002, 417, 529-533.	27.8	600

CARL E WIEMAN

#	Article	IF	CITATIONS
55	Dynamics of collapsing and exploding Bose–Einstein condensates. Nature, 2001, 412, 295-299.	27.8	670
56	Atom cooling, trapping, and quantum manipulation. Reviews of Modern Physics, 1999, 71, S253-S262.	45.6	194
57	Bose–Einstein Condensation in an Ultracold Gas. International Journal of Modern Physics B, 1997, 11, 3281-3296.	2.0	Ο
58	The Richtmyer Memorial Lecture: Bose–Einstein Condensation in an Ultracold Gas. American Journal of Physics, 1996, 64, 847-855.	0.7	12
59	Resource Letter TNAâ€1: Trapping of neutral atoms. American Journal of Physics, 1996, 64, 18-20.	0.7	10
60	The creation of Bose-Einstein condensation in a cold vapor. European Physical Journal D, 1996, 46, 2923-2927.	0.4	0
61	Evanescent-wave guiding of atoms in hollow optical fibers. Physical Review A, 1996, 53, R648-R651.	2.5	133
62	Inexpensive laser cooling and trapping experiment for undergraduate laboratories. American Journal of Physics, 1995, 63, 317-330.	0.7	72
63	Parity nonconservation in atoms; past work and trapped atom future. Hyperfine Interactions, 1993, 81, 27-34.	0.5	2
64	Using diode lasers for atomic physics. Review of Scientific Instruments, 1991, 62, 1-20.	1.3	664
65	Multiply loaded, ac magnetic trap for neutral atoms. Physical Review Letters, 1991, 67, 2439-2442.	7.8	105
66	Collective behavior of optically trapped neutral atoms. Physical Review Letters, 1990, 64, 408-411.	7.8	292
67	432-nm source based on efficient second-harmonic generation of GaAlAs diode-laser radiation in a self-locking external resonant cavity. Optics Letters, 1989, 14, 731.	3.3	87
68	Atomic beam collimation using a laser diode with a self-locking power-buildup cavity. Optics Letters, 1988, 13, 357.	3.3	44
69	Precision measurement of the Stark shift in the 6S1/2→6P3/2cesium transition using a frequency-stabilized laser diode. Physical Review A, 1988, 38, 162-165.	2.5	46
70	Precision measurement of the hyperfine structure of theCs1336P3/2state. Physical Review A, 1988, 38, 1616-1617.	2.5	48