List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7874841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 2013, 447, 345-360.	8.0	1,784
2	Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 2013, 47, 957-995.	11.3	1,518
3	Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of the Total Environment, 2019, 655, 986-1008.	8.0	515
4	Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 2011, 45, 4311-4340.	11.3	331
5	Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of the Total Environment, 2019, 648, 1052-1081.	8.0	328
6	Degradation of fifteen emerging contaminants at μgLâ^'1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 2010, 44, 545-554.	11.3	293
7	Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination, 2007, 215, 166-176.	8.2	239
8	Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Research, 2009, 43, 979-988.	11.3	236
9	Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Research, 2019, 162, 320-330.	11.3	231
10	Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Research, 2009, 43, 4070-4078.	11.3	214
11	Cu-doped ZnO as efficient photocatalyst for the oxidation of arsenite to arsenate under visible light. Applied Catalysis B: Environmental, 2018, 238, 471-479.	20.2	190
12	Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Applied Catalysis B: Environmental, 2014, 144, 369-378.	20.2	176
13	Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Science of the Total Environment, 2020, 710, 136312.	8.0	167
14	Disinfection of urban wastewater by solar driven and UV lamp – TiO2 photocatalysis: Effect on a multi drug resistant Escherichia coli strain. Water Research, 2014, 53, 145-152.	11.3	149
15	Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Science of the Total Environment, 2016, 560-561, 29-35.	8.0	129
16	Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process. Environmental Science and Pollution Research, 2013, 20, 3616-3628.	5.3	125
17	Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains. Chemosphere, 2013, 92, 171-176.	8.2	122
18	Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. Journal of Photochemistry and Photobiology B: Biology, 2015, 148, 43-50.	3.8	122

#	Article	IF	CITATIONS
19	Urban wastewater disinfection for agricultural reuse: effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain. Applied Catalysis B: Environmental, 2015, 178, 65-73.	20.2	113
20	Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: Effect on contaminants of emerging concern and antibiotic resistance. Water Research, 2019, 149, 272-281.	11.3	108
21	Pre-treatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Separation and Purification Technology, 2008, 63, 648-653.	7.9	106
22	Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment. Journal of Cleaner Production, 2018, 175, 38-49.	9.3	106
23	Removal of methylene blue in a photocatalytic reactor using polymethylmethacrylate supported TiO2 nanofilm. Desalination, 2007, 211, 1-9.	8.2	104
24	Vancomycin resistant enterococci: From the hospital effluent to the urban wastewater treatment plant. Science of the Total Environment, 2013, 450-451, 155-161.	8.0	99
25	β-lactams resistance gene quantification in an antibiotic resistant Escherichia coli water suspension treated by advanced oxidation with UV/H2O2. Journal of Hazardous Materials, 2017, 323, 426-433.	12.4	94
26	Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Applied Catalysis B: Environmental, 2017, 207, 182-194.	20.2	94
27	Effect of photocatalysis on the transfer of antibiotic resistance genes in urban wastewater. Catalysis Today, 2015, 240, 55-60.	4.4	89
28	Coagulation/chlorination of surface water: A comparison between chitosan and metal salts. Separation and Purification Technology, 2008, 62, 79-85.	7.9	80
29	Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Topics in Current Chemistry, 2020, 378, 7.	5.8	78
30	Production of hydrogen from glucose by LaFeO 3 based photocatalytic process during water treatment. International Journal of Hydrogen Energy, 2016, 41, 959-966.	7.1	75
31	Comparison between heterogeneous and homogeneous solar driven advanced oxidation processes for urban wastewater treatment: Pharmaceuticals removal and toxicity. Separation and Purification Technology, 2020, 236, 116249.	7.9	75
32	Advanced oxidation of catechol: A comparison among photocatalysis, Fenton and photo-Fenton processes. Desalination, 2009, 249, 878-883.	8.2	73
33	Effect of solar photo-Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater. Journal of Hazardous Materials, 2019, 378, 120737.	12.4	71
34	Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts. Journal of Catalysis, 2016, 339, 47-56.	6.2	69
35	Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis. Journal of Hazardous Materials, 2009, 165, 48-51.	12.4	68
36	High Throughput Analysis of Integron Gene Cassettes in Wastewater Environments. Environmental Science & Technology, 2016, 50, 11825-11836.	10.0	68

#	Article	IF	CITATIONS
37	Application of oxidative removal of NOM to drinking water and formation of disinfection by-products. Desalination, 2005, 176, 155-166.	8.2	66
38	Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: Interdependence of initial pollutant concentration, temperature and iron concentration. Applied Catalysis B: Environmental, 2010, 97, 292-298.	20.2	65
39	Advanced treatment of urban wastewater by sand filtration and graphene adsorption for wastewater reuse: Effect on a mixture of pharmaceuticals and toxicity. Journal of Environmental Chemical Engineering, 2015, 3, 122-128.	6.7	64
40	Enhanced photocatalytic oxidation of arsenite to arsenate in water solutions by a new catalyst based on MoOx supported on TiO2. Applied Catalysis B: Environmental, 2014, 160-161, 247-253.	20.2	63
41	Antibiotic contaminated water treated by photo driven advanced oxidation processes: Ultraviolet/H2O2 vs ultraviolet/peracetic acid. Journal of Cleaner Production, 2018, 205, 67-75.	9.3	63
42	Solar light-induced photoelectrocatalytic degradation of bisphenol-A on TiO2/ITO film anode and BDD cathode. Catalysis Today, 2013, 209, 74-78.	4.4	59
43	Hydrogen production from glucose degradation in water and wastewater treated by Ru-LaFeO3/Fe2O3 magnetic particles photocatalysis and heterogeneous photo-Fenton. International Journal of Hydrogen Energy, 2018, 43, 2184-2196.	7.1	59
44	Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags. Chemosphere, 2011, 85, 1160-1166.	8.2	58
45	Surface water disinfection by chlorination and advanced oxidation processes: Inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation. Science of the Total Environment, 2016, 554-555, 1-6.	8.0	58
46	Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H ₂ O ₂ . Environmental Science & Technology, 2015, 49, 11096-11104.	10.0	57
47	Changes in Antibiotic Resistance Gene Levels in Soil after Irrigation with Treated Wastewater: A Comparison between Heterogeneous Photocatalysis and Chlorination. Environmental Science & Technology, 2020, 54, 7677-7686.	10.0	54
48	Removal of carbamazepine, diclofenac and trimethoprim by solar driven advanced oxidation processes in a compound triangular collector based reactor: A comparison between homogeneous and heterogeneous processes. Chemosphere, 2020, 238, 124665.	8.2	52
49	Visible light active N-doped TiO2 immobilized on polystyrene as efficient system for wastewater treatment. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 255-262.	3.9	48
50	Proposed EU minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge: SCHEER scientific advice. Current Opinion in Environmental Science and Health, 2018, 2, 7-11.	4.1	47
51	Impact of industrial wastewater on the dynamics of antibiotic resistance genes in a full-scale urban wastewater treatment plant. Science of the Total Environment, 2019, 646, 1204-1210.	8.0	47
52	Disinfection of urban wastewater by a new photo-Fenton like process using Cu-iminodisuccinic acid complex as catalyst at neutral pH. Water Research, 2018, 146, 206-215.	11.3	46
53	Advanced treatment of urban wastewater by UV-C/free chlorine process: Micro-pollutants removal and effect of UV-C radiation on trihalomethanes formation. Water Research, 2020, 169, 115220.	11.3	46
54	Removal of THM precursors from a high-alkaline surface water by enhanced coagulation and behaviour of THMFP toxicity on D. magna. Desalination, 2005, 176, 177-188.	8.2	45

#	Article	IF	CITATIONS
55	Contaminants of emerging concern removal from real wastewater by UV/free chlorine process: A comparison with solar/free chlorine and UV/H2O2 at pilot scale. Chemosphere, 2019, 236, 124354.	8.2	43
56	DBPs formation and toxicity monitoring in different origin water treated by ozone and alum/PAC coagulation. Desalination, 2007, 210, 31-43.	8.2	38
57	Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream. Science of the Total Environment, 2012, 427-428, 263-268.	8.0	38
58	Inactivation of Escherichia coli and Enterococci in urban wastewater by sunlight/PAA and sunlight/H 2 O 2 processes. Chemical Engineering Research and Design, 2016, 104, 178-184.	5.6	37
59	Olive Mill and Winery Wastewaters Pre-Treatment by Coagulation with Chitosan. Separation Science and Technology, 2010, 45, 2447-2452.	2.5	35
60	Combination of flow cytometry and molecular analysis to monitor the effect of UVC/H2O2 vs UVC/H2O2/Cu-IDS processes on pathogens and antibiotic resistant genes in secondary wastewater effluents. Water Research, 2020, 184, 116194.	11.3	34
61	Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Topics in Current Chemistry Collections, 2020, , 225-264.	0.5	34
62	MoO /TiO2 immobilized on quartz support as structured catalyst for the photocatalytic oxidation of As(III) to As(V) in aqueous solutions. Chemical Engineering Research and Design, 2016, 109, 190-199.	5.6	32
63	Simultaneous Production of CH ₄ and H ₂ from Photocatalytic Reforming of Glucose Aqueous Solution on Sulfated Pd-TiO ₂ Catalysts. Oil and Gas Science and Technology, 2015, 70, 891-902.	1.4	31
64	Solar driven photocatalysis using iron and chromium doped TiO2 coupled to moving bed biofilm process for olive mill wastewater treatment. Chemical Engineering Journal, 2022, 450, 138107.	12.7	30
65	Immobilised Cerium-Doped Zinc Oxide as a Photocatalyst for the Degradation of Antibiotics and the Inactivation of Antibiotic-Resistant Bacteria. Catalysts, 2019, 9, 222.	3.5	28
66	Simultaneous removal of contaminants of emerging concern and pathogens from urban wastewater by homogeneous solar driven advanced oxidation processes. Science of the Total Environment, 2021, 766, 144320.	8.0	28
67	Removal of arsenic from drinking water by photoâ€catalytic oxidation on <scp>MoO_x</scp> / <scp>TiO₂</scp> and adsorption on γâ€ <scp>Al₂O₃</scp> . Journal of Chemical Technology and Biotechnology, 2016, 91 88-95	3.2	26
68	Advanced Oxidation Processes for the Removal of Food Dyes in Wastewater. Current Organic Chemistry, 2017, 21, 1068-1073.	1.6	26
69	COST Action ES1403: New and Emerging challenges and opportunities in wastewater REUSe (NEREUS). Environmental Science and Pollution Research, 2015, 22, 7183-7186.	5.3	25
70	Multi-barrier treatment of mature landfill leachate: effect of Fenton oxidation and air stripping on activated sludge process and cost analysis. Journal of Environmental Chemical Engineering, 2020, 8, 104444.	6.7	25
71	Sunlight advanced oxidation processes vs ozonation for wastewater disinfection and safe reclamation. Science of the Total Environment, 2021, 787, 147531.	8.0	25
72	Ozone oxidation and aerobic biodegradation with spent mushroom compost for detoxification and benzo(a)pyrene removal from contaminated soil. Chemosphere, 2012, 87, 595-601.	8.2	24

#	Article	IF	CITATIONS
73	Impact of disinfection processes on bacterial community in urban wastewater: Should we rethink microbial assessment methods?. Journal of Environmental Chemical Engineering, 2020, 8, 104393.	6.7	24
74	Optimization of analytical methods for the determination of DBPs: Application to drinking waters from Greece and Italy. Desalination, 2005, 176, 25-36.	8.2	22
75	A comparative evaluation of ozonation and heterogeneous photocatalytic oxidation processes for reuse of secondary treated urban wastewater. Desalination and Water Treatment, 2014, 52, 1414-1421.	1.0	22
76	Comparing TiO2 photocatalysis and UV-C radiation for inactivation and mutant formation of Salmonella typhimurium TA102. Environmental Science and Pollution Research, 2017, 24, 1871-1879.	5.3	22
77	Nonylphenol deca-ethoxylate removal from wastewater by UV/H2O2: Degradation kinetics and toxicity effects. Chemical Engineering Research and Design, 2019, 124, 1-7.	5.6	22
78	Review of aminopolycarboxylic acids–based metal complexesÂapplication to water and wastewater treatment by (photo-)Fenton process at neutral pH. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100451.	5.9	22
79	Intensification of ceftriaxone degradation under UV and solar light irradiation in presence of phosphors based structured catalyst. Chemical Engineering and Processing: Process Intensification, 2019, 137, 12-21.	3.6	21
80	Solar photo-Fenton at circumneutral pH using Fe(III)-EDDS compared to ozonation for tertiary treatment of urban wastewater: Contaminants of emerging concern removal and toxicity assessment. Chemical Engineering Journal, 2022, 431, 133474.	12.7	21
81	PAHs contaminated soils remediation by ozone oxidation. Desalination and Water Treatment, 2010, 23, 161-172.	1.0	20
82	Phosphorus Recovery from Urban Wastewater Treatment Plant Sludge Liquor by Ion Exchange. Separation Science and Technology, 2012, 47, 613-620.	2.5	20
83	Cationic Dye Degradation and Real Textile Wastewater Treatment by Heterogeneous Photo-Fenton, Using a Novel Natural Catalyst. Catalysts, 2021, 11, 1358.	3.5	20
84	Food Azo-Dyes Removal from Water by Heterogeneous Photo-Fenton with LaFeO3 Supported on Honeycomb Corundum Monoliths. Journal of Environmental Engineering, ASCE, 2015, 141, .	1.4	19
85	Visible light driven oxidation of arsenite to arsenate in aqueous solution using Cu-doped ZnO supported on polystyrene pellets. Catalysis Today, 2021, 361, 69-76.	4.4	19
86	Inactivation of an urban wastewater indigenous <i>Escherichia coli</i> strain by cerium doped zinc oxide photocatalysis. RSC Advances, 2018, 8, 26124-26132.	3.6	18
87	Life cycle assessment of sequential and simultaneous combination of electrocoagulation and ozonation for textile wastewater treatment. Journal of Environmental Chemical Engineering, 2021, 9, 106251.	6.7	18
88	Disinfection of roof harvested rainwater inoculated with E. coli and Enterococcus and post-treatment bacterial regrowth: Conventional vs solar driven advanced oxidation processes. Science of the Total Environment, 2021, 801, 149763.	8.0	18
89	Application of photocatalysis as a post treatment method of a heterotrophic–autotrophic denitrification reactor effluent. Chemosphere, 2008, 72, 1706-1711.	8.2	16
90	Simulating the fate of indigenous antibiotic resistant bacteria in a mild slope wastewater polluted stream. Journal of Environmental Sciences, 2018, 69, 95-104.	6.1	16

#	Article	IF	CITATIONS
91	Regrowth Evaluation of Coliform Bacteria Injured by Low Chlorine Doses Using Selective and Nonselective Media. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 2081-2092.	1.7	15
92	Combination of foam fractionation and photo-Fenton like processes for greywater treatment. Separation and Purification Technology, 2022, 293, 121114.	7.9	15
93	Fe3+- IDS as a new green catalyst for water treatment by photo-Fenton process at neutral pH. Journal of Environmental Chemical Engineering, 2021, 9, 106802.	6.7	14
94	Simultaneous disinfection and microcontaminants elimination of urban wastewater secondary effluent by solar advanced oxidation sequential treatment at pilot scale. Journal of Hazardous Materials, 2022, 436, 129134.	12.4	13
95	Assessment of a novel microalgae-cork based technology for removing antibiotics, pesticides and nitrates from groundwater. Chemosphere, 2022, 301, 134777.	8.2	11
96	Activation of solgel titanium nanofilm by UV illumination for NOM removal. Water Science and Technology, 2007, 55, 113-118.	2.5	10
97	Organic THMs precursors removal from surface water with low TOC and high alkalinity by enhanced coagulation. Water Science and Technology: Water Supply, 2004, 4, 103-111.	2.1	9
98	Thirty contaminants of emerging concern identified in secondary treated hospital wastewater and their removal by solar Fenton (like) and sulphate radicals-based advanced oxidation processes. Journal of Environmental Chemical Engineering, 2021, 9, 106614.	6.7	7
99	Removal of Xenobiotic Compounds from Water and Wastewater by Advanced Oxidation Processes. Environmental Pollution, 2010, , 387-412.	0.4	6
100	Potential reuse of a leather tanning and an urban wastewater treatment plant effluent in Italy. International Journal of Environment and Pollution, 2006, 28, 100.	0.2	5
101	Two-phase anaerobic digestion of partially acidified sewage sludge: a pilot plant study for safe sludge disposal in developing countries. Environmental Technology (United Kingdom), 2012, 33, 2089-2095.	2.2	5
102	The Contribution of the Coagulation Process in Controlling Microbial Risk and Disinfection By-products Formation in DrinkingÂWater. , 2014, , 219-238.		5
103	Progress in Nanomaterials Applications for Water Purification. , 2017, , 1-24.		5
104	Comparison of Photocatalytic Activities of Commercial Titanium Dioxide Powders Immobilised on Glass Substrates. Journal of Advanced Oxidation Technologies, 2010, 13, .	0.5	4
105	Effect of the aqueous matrix on the inactivation of E. coli by permaleic acid. Science of the Total Environment, 2021, 767, 144395.	8.0	3
106	Editorial - "Urban wastewater reuse and chemical contaminants of emerging concern― Chemosphere, 2020, 248, 126052.	8.2	3
107	New challenges in the application of advanced oxidation processes. Environmental Science and Pollution Research, 2018, 25, 27673-27675.	5.3	1
108	Understanding and Optimizing Peracetic Acid Disinfection Processes Using Computational Fluid Dynamics: The Case Study of Nocera (Italy) Wastewater Treatment Plant. Lecture Notes in Civil Engineering, 2017, , 706-712.	0.4	1

#	Article	IF	CITATIONS
109	Environmental Applications of Photocatalytic Processes. Catalysts, 2020, 10, 1264.	3.5	0
110	11th Biennial Conference on Environmental Science and Technology (CEST 2009), Chania, Crete, Greece (3–5 September 2009). , 0, , 1-2.		0