
Nicolas Sergeant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7873989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tau positron emission tomography, cerebrospinal fluid and plasma biomarkers of neurodegeneration, and neurocognitive testing: an exploratory study of participants with myotonic dystrophy type 1. Journal of Neurology, 2022, , .	3.6	2
2	Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats. Nature Biomedical Engineering, 2022, 6, 207-220.	22.5	16
3	Impaired Glucose Homeostasis in a Tau Knock-In Mouse Model. Frontiers in Molecular Neuroscience, 2022, 15, 841892.	2.9	4
4	Impact of chronic doxycycline treatment in the APP/PS1 mouse model of Alzheimer's disease. Neuropharmacology, 2022, 209, 108999.	4.1	3
5	A ß-Secretase Modulator Decreases Tau Pathology and Preserves Short-Term Memory in a Mouse Model of Neurofibrillary Degeneration. Frontiers in Pharmacology, 2021, 12, 679335.	3.5	2
6	Identification of proAKAP4 concentration variations in dromedary sperm and their correlation with monthly semen parameters. Reproduction and Fertility, 2021, 2, 268-279.	1.8	6
7	Pharmacomodulations around an anti-Alzheimer drug-candidate. European Journal of Medicinal Chemistry Reports, 2021, 4, 100020.	1.4	0
8	Mass spectrometry reveals distinct proteomic profiles in high- and low-quality stallion spermatozoa. Reproduction, 2020, 160, 695-707.	2.6	23
9	New piperazine multi-effect drugs prevent neurofibrillary degeneration and amyloid deposition, and preserve memory in animal models of Alzheimer's disease. Neurobiology of Disease, 2019, 129, 217-233.	4.4	21
10	Expression, localization, and concentration of A-kinase anchor protein 4 (AKAP4) and its precursor (proAKAP4) in equine semen: Promising marker correlated to the total and progressive motility in thawed spermatozoa. Theriogenology, 2019, 131, 52-60.	2.1	33
11	A Kinase Anchor Protein 4 Is Vulnerable to Oxidative Adduction in Male Germ Cells. Frontiers in Cell and Developmental Biology, 2019, 7, 319.	3.7	29
12	Myotonic Dystrophy: an RNA Toxic Gain of Function Tauopathy?. Advances in Experimental Medicine and Biology, 2019, 1184, 207-216.	1.6	10
13	New phenylaniline derivatives as modulators of amyloid protein precursor metabolism. Bioorganic and Medicinal Chemistry, 2018, 26, 2151-2164.	3.0	6
14	β-Amyloid Precursor Protein Intracellular Domain Controls Mitochondrial Function by Modulating Phosphatase and Tensin Homolog–Induced Kinase 1 Transcription in Cells and in Alzheimer Mice Models. Biological Psychiatry, 2018, 83, 416-427.	1.3	45
15	Contribution of the Endosomal-Lysosomal and Proteasomal Systems in Amyloid-β Precursor Protein Derived Fragments Processing. Frontiers in Cellular Neuroscience, 2018, 12, 435.	3.7	24
16	A phenotypic approach to the discovery of compounds that promote non-amyloidogenic processing of the amyloid precursor protein: Toward a new profile of indirect Î ² -secretase inhibitors. European Journal of Medicinal Chemistry, 2018, 159, 104-125.	5.5	16
17	Beneficial Effect of a Selective Adenosine A2A Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 235.	2.9	72
18	Aâ€kinase anchor protein 4 precursor (proâ€AKAP4) in human spermatozoa. Andrology, 2018, 6, 854-859.	3.5	31

#	Article	IF	CITATIONS
19	Concentration of proAKAP4 as a pertinent read-out of sperm quality in mammals. Animal Reproduction Science, 2018, 194, e24.	1.5	5
20	Defining the human sperm microtubulome: an integrated genomics approach ^{<xref ref-type="fn" rid="afn1">â€</xref } . Biology of Reproduction, 2017, 96, 93-106.	2.7	15
21	Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Molecular Psychiatry, 2017, 22, 874-883.	7.9	98
22	Two-Dimensional Electrophoresis Protocols to Analyze the Microtubule-Associated Tau Proteins from Several Biological Sources. Methods in Molecular Biology, 2017, 1523, 251-261.	0.9	3
23	Development of a MBNLΔ decoy-based gene therapy for myotonic dystrophy. Neuromuscular Disorders, 2017, 27, S181.	0.6	0
24	[P4–116]: FRONTOTEMPORAL LOBAR DEGENERATIONS, RNAOPATHY LEADING TO PROTEINOPATHIES. Alzheimer's and Dementia, 2017, 13, P1301.	0.8	0
25	Differential Mass Spectrometry Profiles of Tau Protein in the Cerebrospinal Fluid of Patients with Alzheimer's Disease, Progressive Supranuclear Palsy, and Dementia with Lewy Bodies. Journal of Alzheimer's Disease, 2016, 51, 1033-1043.	2.6	104
26	Reduced Tau protein expression is associated with frontotemporal degeneration with progranulin mutation. Acta Neuropathologica Communications, 2016, 4, 74.	5.2	18
27	Tau Protein Quantification in Human Cerebrospinal Fluid by Targeted Mass Spectrometry at High Sequence Coverage Provides Insights into Its Primary Structure Heterogeneity. Journal of Proteome Research, 2016, 15, 667-676.	3.7	91
28	A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Molecular Psychiatry, 2016, 21, 97-107.	7.9	145
29	Role of the Tau N-terminal region in microtubule stabilization revealed by newendogenous truncated forms. Scientific Reports, 2015, 5, 9659.	3.3	100
30	Regulation of human MAPT gene expression. Molecular Neurodegeneration, 2015, 10, 28.	10.8	132
31	Chloroquine and Chloroquinoline Derivatives as Models for the Design of Modulators of Amyloid Peptide Precursor Metabolism. ACS Chemical Neuroscience, 2015, 6, 559-569.	3.5	35
32	Human Spermatozoa as a Model for Detecting Missing Proteins in the Context of the Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 2015, 14, 3606-3620.	3.7	55
33	MBNL Sequestration by Toxic RNAs and RNA Misprocessing in the Myotonic Dystrophy Brain. Cell Reports, 2015, 12, 1159-1168.	6.4	120
34	miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation <i>in vivo</i> . Human Molecular Genetics, 2015, 24, 6721-6735.	2.9	177
35	Mutant huntingtin alters Tau phosphorylation and subcellular distribution. Human Molecular Genetics, 2015, 24, 76-85.	2.9	73
36	RBFOX1 Cooperates with MBNL1 to Control Splicing in Muscle, Including Events Altered in Myotonic Dystrophy Type 1. PLoS ONE, 2014, 9, e107324.	2.5	45

#	Article	IF	CITATIONS
37	Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Frontiers in Molecular Neuroscience, 2014, 6, 57.	2.9	69
38	Consensus Brain-derived Protein, Extraction Protocol for the Study of Human and Murine Brain Proteome Using Both 2D-DIGE and Mini 2DE Immunoblotting. Journal of Visualized Experiments, 2014, , .	0.3	6
39	Tau exon 2 responsive elements deregulated in myotonic dystrophy type I are proximal to exon 2 and synergistically regulated by MBNL1 and MBNL2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 654-664.	3.8	23
40	Recovery of brain biomarkers following peroxisome proliferator-activated receptor agonist neuroprotective treatment before ischemic stroke. Proteome Science, 2014, 12, 24.	1.7	17
41	O1-09-02: DETECTION AND QUANTIFICATION OF THE TAU PROTEIN AND ITS ISOFORMS IN THE CSF OF ALZHEIMER'S DISEASE PATIENTS USING MASS SPECTROMETRY. , 2014, 10, P147-P147.		Ο
42	MUC1-C nuclear localization drives invasiveness of renal cancer cells through a sheddase/gamma secretase dependent pathway. Oncotarget, 2014, 5, 754-763.	1.8	23
43	Immunodetection of Tau microtubule-associated protein in human sperm and testis. Asian Journal of Andrology, 2014, 16, 927.	1.6	8
44	MBNL1 gene variants as modifiers of disease severity in myotonic dystrophy type 1. Journal of Neurology, 2013, 260, 998-1003.	3.6	12
45	Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker. Neurobiology of Aging, 2013, 34, 757-769.	3.1	16
46	NMDA receptor dysfunction contributes to impaired brainâ€derived neurotrophic factorâ€induced facilitation of hippocampal synaptic transmission in a <scp>T</scp> au transgenic model. Aging Cell, 2013, 12, 11-23.	6.7	64
47	Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour. Brain, 2013, 136, 957-970.	7.6	64
48	Synaptic protein dysregulation in myotonic dystrophy type 1. Rare Diseases (Austin, Tex), 2013, 1, e25553.	1.8	14
49	A New Decision Tree Combining Abeta 1-42 and p-Tau Levels in Alzheimer's Diagnosis. Current Alzheimer Research, 2013, 10, 357-364.	1.4	19
50	Potential Contribution of Exosomes to the Prion-Like Propagation of Lesions in Alzheimer's Disease. Frontiers in Physiology, 2012, 3, 229.	2.8	93
51	Tau Phosphorylation and Sevoflurane Anesthesia. Survey of Anesthesiology, 2012, 56, 176.	0.1	5
52	Tau Phosphorylation and Sevoflurane Anesthesia. Anesthesiology, 2012, 116, 779-787.	2.5	195
53	Targeting Phospho-Ser422 by Active Tau Immunotherapy in the THYTau22 Mouse Model: A Suitable Therapeutic Approach. Current Alzheimer Research, 2012, 9, 397-405.	1.4	173
54	Clinical, Neuropathological, and Biochemical Characterization of the Novel Tau Mutation P332S. Journal of Alzheimer's Disease, 2012, 31, 741-749.	2.6	25

#	Article	IF	CITATIONS
55	MicroRNAs and the Regulation of Tau Metabolism. International Journal of Alzheimer's Disease, 2012, 2012, 1-6.	2.0	65
56	Nuclear Tau, a Key Player in Neuronal DNA Protection. Journal of Biological Chemistry, 2011, 286, 4566-4575.	3.4	342
57	O3-05-01: Nuclear tau protects DNA in stress condition. , 2011, 7, S507-S507.		0
58	Tau Pathology. Advances in Neurobiology, 2011, , 83-132.	1.8	1
59	Mis-splicing of Tau exon 10 in myotonic dystrophy type 1 is reproduced by overexpression of CELF2 but not by MBNL1 silencing. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 732-742.	3.8	45
60	Contribution of Multivesicular Bodies to the Prion-Like Propagation of Lesions in Alzheimer's Disease. , 2011, , .		0
61	Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nature Medicine, 2011, 17, 720-725.	30.7	299
62	AN 88‥EAR OLD WOMAN WITH LONG‣ASTING PARKINSONISM. Brain Pathology, 2011, 21, 465-468.	4.1	0
63	Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology. Neurobiology of Disease, 2011, 43, 486-494.	4.4	137
64	MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Human Molecular Genetics, 2011, 20, 4016-4024.	2.9	136
65	Analysis of Exonic Regions Involved in Nuclear Localization, Splicing Activity, and Dimerization of Muscleblind-like-1 Isoforms. Journal of Biological Chemistry, 2011, 286, 16435-16446.	3.4	62
66	From tau phosphorylation to tau aggregation: what about neuronal death?. Biochemical Society Transactions, 2010, 38, 967-972.	3.4	87
67	Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Human Molecular Genetics, 2010, 19, 3959-3969.	2.9	285
68	Two-Dimensional Electrophoresis of Tau Mutants Reveals Specific Phosphorylation Pattern Likely Linked to Early Tau Conformational Changes. PLoS ONE, 2009, 4, e4843.	2.5	25
69	Early Tau Pathology Involving the Septo-Hippocampal Pathway in a Tau Transgenic Model: Relevance to Alzheimers Disease. Current Alzheimer Research, 2009, 6, 152-157.	1.4	50
70	Epstein-Barr Virus Protein EB2 Contains an N-Terminal Transferable Nuclear Export Signal That Promotes Nucleocytoplasmic Export by Directly Binding TAP/NXF1. Journal of Virology, 2009, 83, 12759-12768.	3.4	31
71	Altered splicing of Tau in DM1 is different from the foetal splicing process. FEBS Letters, 2009, 583, 675-679.	2.8	9
72	Characterization of the interaction between Aβ 1–42 and glyceraldehyde phosphodehydrogenase. Journal of Peptide Science, 2008, 14, 755-762.	1.4	27

#	Article	IF	CITATIONS
73	Biochemistry of Tau in Alzheimer's disease and related neurological disorders. Expert Review of Proteomics, 2008, 5, 207-224.	3.0	242
74	Overexpression of MBNL1 fetal isoforms and modified splicing of Tau in the DM1 brain: Two individual consequences of CUG trinucleotide repeats. Experimental Neurology, 2008, 210, 467-478.	4.1	47
75	Tau as a biomarker of neurodegenerative diseases. Biomarkers in Medicine, 2008, 2, 363-384.	1.4	83
76	Alkalizing Drugs Induce Accumulation of Amyloid Precursor Protein By-products in Luminal Vesicles of Multivesicular Bodies. Journal of Biological Chemistry, 2007, 282, 18197-18205.	3.4	176
77	Involvement of -site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8167-8172.	7.1	107
78	Protein Kinase CK2 Phosphorylation of EB2 Regulates Its Function in the Production of Epstein-Barr Virus Infectious Viral Particles. Journal of Virology, 2007, 81, 11850-11860.	3.4	30
79	Intracellular pH regulates amyloid precursor protein intracellular domain accumulation. Neurobiology of Disease, 2007, 25, 686-696.	4.4	78
80	Brain-specific change in alternative splicing of Tau exon 6 in myotonic dystrophy type 1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 460-467.	3.8	50
81	Pin1 allows for differential Tau dephosphorylation in neuronal cells. Molecular and Cellular Neurosciences, 2006, 32, 155-160.	2.2	68
82	ETR-3 represses Tau exons 2/3 inclusion, a splicing event abnormally enhanced in myotonic dystrophy type I. Journal of Neuroscience Research, 2006, 84, 852-859.	2.9	44
83	Expression of human FE65 in amyloid precursor protein transgenic mice is associated with a reduction in βâ€∎myloid load. Journal of Neurochemistry, 2005, 93, 330-338.	3.9	45
84	Phosphorylation of amyloid precursor carboxy-terminal fragments enhances their processing by a gamma-secretase-dependent mechanism. Neurobiology of Disease, 2005, 20, 625-637.	4.4	82
85	Tau protein as a differential biomarker of tauopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 179-197.	3.8	262
86	A non-DM1, non-DM2 multisystem myotonic disorder with frontotemporal dementia: phenotype and suggestive mapping of the DM3 locus to chromosome 15q21-24. Brain, 2004, 127, 1979-1992.	7.6	38
87	P3-031 A novel β-amyloid42 index in cerebrospinal fluid for specific determination of Alzheimer's disease. Neurobiology of Aging, 2004, 25, S360.	3.1	0
88	Massive CA1/2 Neuronal Loss with Intraneuronal and N-Terminal Truncated Aβ42 Accumulation in a Novel Alzheimer Transgenic Model. American Journal of Pathology, 2004, 165, 1289-1300.	3.8	375
89	Phosphorylated serine 199 of microtubule-associated protein tau is a neuronal epitope abundantly expressed in youth and an early marker of tau pathology. Acta Neuropathologica, 2003, 105, 89-97.	7.7	42
90	Diffuse form of argyrophilic grain disease: a new variant of four-repeat tauopathy different from limbic argyrophilic grain disease. Acta Neuropathologica, 2003, 106, 575-583.	7.7	38

#	Article	lF	CITATIONS
91	In vitro models of age-related neurodegenerative disorders. Experimental Gerontology, 2003, 38, 1309-1317.	2.8	9
92	Truncated beta-amyloid peptide species in pre-clinical Alzheimer's disease as new targets for the vaccination approach. Journal of Neurochemistry, 2003, 85, 1581-1591.	3.9	196
93	Guadeloupean parkinsonism: a cluster of progressive supranuclear palsyâ€like tauopathy. Brain, 2002, 125, 801-811.	7.6	157
94	Tau aggregation in the hippocampal formation: an ageing or a pathological process?. Experimental Gerontology, 2002, 37, 1291-1296.	2.8	88
95	Argyrophilic grain disease and Alzheimer's disease are distinguished by their different distribution of tau protein isoforms. Acta Neuropathologica, 2002, 104, 425-434.	7.7	79
96	Progressive decrease of amyloid precursor protein carboxy terminal fragments (APP-CTFs), associated with tau pathology stages, in Alzheimer's disease. Journal of Neurochemistry, 2002, 81, 663-672.	3.9	61
97	Abnormal Tau phosphorylation of the Alzheimer-type also occurs during mitosis. Journal of Neurochemistry, 2002, 83, 412-420.	3.9	65
98	Pin1 : A Therapeutic Target in Alzheimer Neurodegeneration. Journal of Molecular Neuroscience, 2002, 19, 275-288.	2.3	38
99	Paradoxical phosphorylation of the serine 199 on tau proteins from young individuals. NeuroReport, 2001, 12, 3177-3181.	1.2	9
100	Hepatocyte growth factor/scatter factor stimulates migration of rat mammary fibroblasts through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt pathways. FEBS Journal, 2001, 268, 4423-4429.	0.2	42
101	Proteoglycans: pericellular and cell surface multireceptors that integrate external stimuli in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 2001, 6, 253-273.	2.7	67
102	Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Human Molecular Genetics, 2001, 10, 2143-2155.	2.9	237
103	Rapid Tau Protein Dephosphorylation and Differential Rephosphorylation during Cardiac Arrest-Induced Cerebral Ischemia and Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 543-549.	4.3	53
104	Stimulation of DNA Synthesis and Cell Proliferation of Human Mammary Myoepithelial-like Cells by Hepatocyte Growth Factor/Scatter Factor Depends on Heparan Sulfate Proteoglycans and Sustained Phosphorylation of Mitogen-activated Protein Kinases p42/44. Journal of Biological Chemistry, 2000, 275, 17094-17099.	3.4	36
105	Fibroblast Growth Factor-2 Stimulation of p42/44MAPKPhosphorylation and IκB Degradation Is Regulated by Heparan Sulfate/Heparin in Rat Mammary Fibroblasts. Journal of Biological Chemistry, 2000, 275, 33905-33910.	3.4	65
106	Pathological Tau Phenotypes: The Weight of Mutations, Polymorphisms, and Differential Neuronal Vulnerabilities. Annals of the New York Academy of Sciences, 2000, 920, 107-114.	3.8	22
107	Phosphorylation of specific sets of tau isoforms reflects different neurofibrillary degeneration processes. FEBS Letters, 1998, 433, 201-204.	2.8	104
108	Specific Pathological Tau Protein Variants Characterize Pick's Disease. Journal of Neuropathology and Experimental Neurology, 1996, 55, 159-168.	1.7	204