List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7873378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	4.7	150
2	Hypoxia Is a Dominant Remodeler of the Effector TÂCell Surface Proteome Relative to Activation and Regulatory T Cell Suppression. Molecular and Cellular Proteomics, 2022, 21, 100217.	3.8	5
3	A Whole-Genome CRISPR Screen Identifies AHR Loss as a Mechanism of Resistance to a PARP7 Inhibitor. Molecular Cancer Therapeutics, 2022, 21, 1076-1089.	4.1	8
4	The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and x-ray diffraction at room temperature. Science Advances, 2022, 8, .	10.3	24
5	Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology, 2021, 160, 362-377.e13.	1.3	90
6	A Very Long-Acting PARP Inhibitor Suppresses Cancer Cell Growth in DNA Repair-Deficient Tumor Models. Cancer Research, 2021, 81, 1076-1086.	0.9	10
7	An expanded universe of cancer targets. Cell, 2021, 184, 1142-1155.	28.9	135
8	Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Science Advances, 2021, 7, .	10.3	100
9	A protein interaction landscape of breast cancer. Science, 2021, 374, eabf3066.	12.6	66
10	Synthetic lethality as an engine for cancer drug target discovery. Nature Reviews Drug Discovery, 2020, 19, 23-38.	46.4	295
11	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Reports, 2020, 31, 107625.	6.4	78
12	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	27.8	3,542
13	Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy. Cancer Discovery, 2020, 10, 351-370.	9.4	162
14	A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors. Scientific Reports, 2019, 9, 201.	3.3	38
15	Design and Synthesis of Poly(ADP-ribose) Polymerase Inhibitors: Impact of Adenosine Pocket-Binding Motif Appendage to the 3-Oxo-2,3-dihydrobenzofuran-7-carboxamide on Potency and Selectivity. Journal of Medicinal Chemistry, 2019, 62, 5330-5357.	6.4	26
16	PARP inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer. Journal of Clinical Investigation, 2019, 129, 1211-1228.	8.2	222
17	Commonly Occurring Cell Subsets in High-Grade Serous Ovarian Tumors Identified by Single-Cell Mass Cytometry. Cell Reports, 2018, 22, 1875-1888.	6.4	83
18	Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nature Medicine, 2018, 24, 628-637.	30.7	649

#	Article	IF	CITATIONS
19	Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. Cell, 2018, 175, 1958-1971.e15.	28.9	378
20	Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets. Nature Communications, 2018, 9, 2016.	12.8	22
21	Synthetic lethal therapies for cancer: what's next after PARP inhibitors?. Nature Reviews Clinical Oncology, 2018, 15, 564-576.	27.6	303
22	Chemosensitivity profiling of osteosarcoma tumour cell lines identifies a model of BRCAness. Scientific Reports, 2018, 8, 10614.	3.3	13
23	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	28.9	459
24	Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nature Communications, 2018, 9, 1849.	12.8	310
25	DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade. Journal of Clinical Investigation, 2018, 128, 1671-1687.	8.2	19
26	Genome-wide barcoded transposon screen for cancer drug sensitivity in haploid mouse embryonic stem cells. Scientific Data, 2017, 4, 170020.	5.3	14
27	Modeling Therapy Resistance in <i>BRCA1/2</i> -Mutant Cancers. Molecular Cancer Therapeutics, 2017, 16, 2022-2034.	4.1	66
28	Elevated APOBEC3B expression drives a kataegic-like mutation signature and replication stress-related therapeutic vulnerabilities in p53-defective cells. British Journal of Cancer, 2017, 117, 113-123.	6.4	84
29	PARP inhibitors: Synthetic lethality in the clinic. Science, 2017, 355, 1152-1158.	12.6	1,826
30	ATR Is a Therapeutic Target in Synovial Sarcoma. Cancer Research, 2017, 77, 7014-7026.	0.9	43
31	CDK1 Is a Synthetic Lethal Target for KRAS Mutant Tumours. PLoS ONE, 2016, 11, e0149099.	2.5	60
32	ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nature Communications, 2016, 7, 13837.	12.8	272
33	PARP inhibitor combination therapy. Critical Reviews in Oncology/Hematology, 2016, 108, 73-85.	4.4	175
34	Large-Scale Profiling of Kinase Dependencies in Cancer Cell Lines. Cell Reports, 2016, 14, 2490-2501.	6.4	97
35	Synthetic Lethal Targeting of <i>ARID1A</i> -Mutant Ovarian Clear Cell Tumors with Dasatinib. Molecular Cancer Therapeutics, 2016, 15, 1472-1484.	4.1	73
36	BRCAness revisited. Nature Reviews Cancer, 2016, 16, 110-120.	28.4	976

#	Article	IF	CITATIONS
37	The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer. Molecular Cell, 2015, 58, 690-698.	9.7	117
38	Assessing the Significance of <i>BRCA1</i> and <i>BRCA2</i> Mutations in Pancreatic Cancer. Journal of Clinical Oncology, 2015, 33, 3080-3081.	1.6	31
39	DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. New England Journal of Medicine, 2015, 373, 1697-1708.	27.0	1,796
40	Functional Genetic Screen Identifies Increased Sensitivity to WEE1 Inhibition in Cells with Defects in Fanconi Anemia and HR Pathways. Molecular Cancer Therapeutics, 2015, 14, 865-876.	4.1	52
41	Oncogenic KRAS sensitizes premalignant, but not malignant cells, to Noxa-dependent apoptosis through the activation of the MEK/ERK pathway. Oncotarget, 2015, 6, 10994-11008.	1.8	13
42	Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity. Oncotarget, 2015, 6, 10746-10758.	1.8	16
43	The cylindromatosis gene product, CYLD, interacts with MIB2 to regulate Notch signalling. Oncotarget, 2014, 5, 12126-12140.	1.8	26
44	Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nature Medicine, 2013, 19, 1381-1388.	30.7	371
45	Secondary mutations in <i><scp>BRCA2</scp></i> associated with clinical resistance to a <scp>PARP</scp> inhibitor. Journal of Pathology, 2013, 229, 422-429.	4.5	287
46	BMN 673, a Novel and Highly Potent PARP1/2 Inhibitor for the Treatment of Human Cancers with DNA Repair Deficiency. Clinical Cancer Research, 2013, 19, 5003-5015.	7.0	416
47	A Genetic Screen Using the PiggyBac Transposon in Haploid Cells Identifies Parp1 as a Mediator of Olaparib Toxicity. PLoS ONE, 2013, 8, e61520.	2.5	147
48	Genetic Interactions in Cancer Progression and Treatment. Cell, 2011, 145, 30-38.	28.9	380
49	Poly(ADP)-Ribose Polymerase Inhibition: Frequent Durable Responses in <i>BRCA</i> Carrier Ovarian Cancer Correlating With Platinum-Free Interval. Journal of Clinical Oncology, 2010, 28, 2512-2519.	1.6	877
50	A Marker of Homologous Recombination Predicts Pathologic Complete Response to Neoadjuvant Chemotherapy in Primary Breast Cancer. Clinical Cancer Research, 2010, 16, 6159-6168.	7.0	287
51	Inhibition of Poly(ADP-Ribose) Polymerase in Tumors from <i>BRCA</i> Mutation Carriers. New England Journal of Medicine, 2009, 361, 123-134.	27.0	3,312
52	Resistance to therapy caused by intragenic deletion in BRCA2. Nature, 2008, 451, 1111-1115.	27.8	894
53	Deficiency in the Repair of DNA Damage by Homologous Recombination and Sensitivity to Poly(ADP-Ribose) Polymerase Inhibition. Cancer Research, 2006, 66, 8109-8115.	0.9	1,172
54	Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434, 917-921.	27.8	5,595

#	Article	IF	CITATIONS
55	Hallmarks of 'BRCAness' in sporadic cancers. Nature Reviews Cancer, 2004, 4, 814-819.	28.4	1,477
56	A Short Pseudoautosomal Region in Laboratory Mice. Genome Research, 2001, 11, 1826-1832.	5.5	120
57	MKP5, a new member of the MAP kinase phosphatase family, which selectively dephosphorylates stress-activated kinases. Oncogene, 1999, 18, 6981-6988.	5.9	132
58	Evolutionary rate of a gene affected by chromosomal position. Current Biology, 1999, 9, 987-S3.	3.9	94
59	Anin vivo model of intratumoural aromatase using aromatase-transfected MCF7 human breast cancer cells. International Journal of Cancer, 1995, 62, 297-302.	5.1	24
60	Identification of the breast cancer susceptibility gene BRCA2. Nature, 1995, 378, 789-792.	27.8	3,230
61	Complementation of byrl in fission yeast by mammalian MAP kinase kinase requires coexpression of Raf kinase. Nature, 1993, 364, 349-352.	27.8	76