Qiran Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7872462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boron nitride nanosheets for surface-enhanced Raman spectroscopy. Materials Today Physics, 2022, 22, 100575.	6.0	6
2	Advances in synthesis and applications of boron nitride nanotubes: A review. Chemical Engineering Journal, 2022, 431, 134118.	12.7	38
3	Nanomaterials enhancing the solid-state storage and decomposition of ammonia. Nanotechnology, 2022, 33, 222001.	2.6	4
4	lsotope effect on the thermal expansion coefficient of atomically thin boron nitride. 2D Materials, 2021, 8, 034006.	4.4	5
5	Boron Nitride Nanosheet Dispersion at High Concentrations. ACS Applied Materials & Interfaces, 2021, 13, 44751-44759.	8.0	30
6	Outstanding Thermal Conductivity of Single Atomic Layer Isotope-Modified Boron Nitride. Physical Review Letters, 2020, 125, 085902.	7.8	51
7	Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities. ACS Applied Materials & Interfaces, 2020, 12, 19866-19873.	8.0	27
8	Two-Dimensional Van der Waals Heterostructures for Synergistically Improved Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 21985-21991.	8.0	17
9	Ceria/cobalt borate hybrids as efficient electrocatalysts for water oxidation under neutral conditions. Nanoscale Advances, 2019, 1, 3686-3692.	4.6	10
10	Atomically Thin Boron Nitride as an Ideal Spacer for Metal-Enhanced Fluorescence. ACS Nano, 2019, 13, 12184-12191.	14.6	24
11	High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Science Advances, 2019, 5, eaav0129.	10.3	308
12	High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators. Energy Storage Materials, 2019, 19, 352-359.	18.0	82
13	Asymmetric electric field screening in van der Waals heterostructures. Nature Communications, 2018, 9, 1271.	12.8	38
14	Rigorous and Accurate Contrast Spectroscopy for Ultimate Thickness Determination of Micrometer-Sized Graphene on Gold and Molecular Sensing. ACS Applied Materials & Interfaces, 2018, 10, 22520-22528.	8.0	12
15	Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Composites Science and Technology, 2018, 165, 322-330.	7.8	98
16	Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale, 2017, 9, 3059-3067.	5.6	141
17	Molecule-Level g-C ₃ N ₄ Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. Journal of the American Chemical Society, 2017, 139, 3336-3339.	13.7	1,094
18	Highly efficient oxygen evolution from CoS ₂ /CNT nanocomposites via a one-step electrochemical deposition and dissolution method. Nanoscale, 2017, 9, 6886-6894.	5.6	55

QIRAN CAI

#	Article	IF	CITATIONS
19	Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications, 2017, 8, 15815.	12.8	576
20	Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surfaceâ€Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 8405-8409.	13.8	73
21	Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surfaceâ€Enhanced Raman Spectroscopy. Angewandte Chemie, 2016, 128, 8545-8549.	2.0	13
22	Electron beam directed etching of hexagonal boron nitride. Nanoscale, 2016, 8, 16182-16186.	5.6	40
23	Moleculeâ€Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption. Advanced Functional Materials, 2016, 26, 8202-8210.	14.9	47
24	Boron Nitride Nanosheet-Veiled Gold Nanoparticles for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2016, 8, 15630-15636.	8.0	54
25	Neuron-Inspired Interpenetrative Network Composed of Cobalt–Phosphorus-Derived Nanoparticles Embedded within Porous Carbon Nanotubes for Efficient Hydrogen Production. ACS Applied Materials & Interfaces, 2016, 8, 17284-17291.	8.0	13
26	Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 3543-3550.	8.0	72
27	In situ prepared V ₂ O ₅ /graphene hybrid as a superior cathode material for lithium-ion batteries. RSC Advances, 2016, 6, 35287-35294.	3.6	14
28	Growth of Single-Walled Carbon Nanotubes from Well-Defined POSS Nanoclusters Structure. Nano, 2015, 10, 1550004.	1.0	0
29	Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 7761-7766.	2.8	61
30	Growth of carbon nanotubes from titanium dioxide nanoparticles. Applied Surface Science, 2012, 258, 8019-8025.	6.1	13
31	Metal-Catalyst-Free Growth of Single-Walled Carbon Nanotubes on Substrates. Journal of the American Chemical Society, 2009, 131, 2094-2095.	13.7	226
32	Superlong-oriented Single-Walled Carbon Nanotube Arrays on Substrate with Low Percentage of Metallic Structure. Journal of Physical Chemistry C, 2009, 113, 6983-6988.	3.1	25
33	Identification of the Structures of Superlong Oriented Single-Walled Carbon Nanotube Arrays by Electrodeposition of Metal and Raman Spectroscopy. Journal of the American Chemical Society, 2008, 130, 11860-11861.	13.7	35