
Luca Pandolfini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7872407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature, 2017, 552, 126-131.	27.8	833
2	METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation. Molecular Cell, 2019, 74, 1278-1290.e9.	9.7	288
3	RNA modifications detection by comparative Nanopore direct RNA sequencing. Nature Communications, 2021, 12, 7198.	12.8	163
4	Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan. Cell Systems, 2016, 2, 122-132.	6.2	155
5	MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biology, 2017, 15, 9.	3.8	75
6	The positional identity of mouse ES cell-generated neurons is affected by BMP signaling. Cellular and Molecular Life Sciences, 2013, 70, 1095-1111.	5.4	29
7	Activin/Nodal Signaling Supports Retinal Progenitor Specification in a Narrow Time Window during Pluripotent Stem Cell Neuralization. Stem Cell Reports, 2015, 5, 532-545.	4.8	20
8	Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Molecular Cell, 2021, 81, 2793-2807.e8.	9.7	18
9	Assessment of antibody library diversity through next generation sequencing and technical error compensation. PLoS ONE, 2017, 12, e0177574.	2.5	17
10	The double inhibition of endogenously produced BMP and <scp>W</scp> nt factors synergistically triggers dorsal telencephalic differentiation of mouse ES cells. Developmental Neurobiology, 2015, 75, 66-79.	3.0	16
11	RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells. Genome Biology, 2016, 17, 94.	8.8	12
12	Further Evidence Supporting N7-Methylation of Guanosine (m7G) in Human MicroRNAs. Molecular Cell, 2020, 79, 201-202.	9.7	12
13	The microRNA miR-21 Is a Mediator of FGF8 Action on Cortical COUP-TFI Translation. Stem Cell Reports, 2018, 11, 756-769.	4.8	11
14	The non-coding epitranscriptome in cancer. Briefings in Functional Genomics, 2021, 20, 94-105.	2.7	11
15	A eutherian-specific microRNA controls the translation of Satb2 in a model of cortical differentiation. Stem Cell Reports, 2021, 16, 1496-1509.	4.8	8
16	Towards SINEUP-based therapeutics: Design of an inÂvitro synthesized SINEUP RNA. Molecular Therapy - Nucleic Acids, 2022, 27, 1092-1102.	5.1	4