Héctor M Moya-Cessa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7872032/publications.pdf

Version: 2024-02-01

194 papers 3,251 citations

34 h-index 52 g-index

202 all docs 202 docs citations

202 times ranked

1527 citing authors

#	Article	IF	CITATIONS
1	SchrĶdinger-cat states in the resonant Jaynes-Cummings model: Collapse and revival of oscillations of the photon-number distribution. Physical Review A, 1992, 45, 8190-8203.	2.5	246
2	Series representation of quantum-field quasiprobabilities. Physical Review A, 1993, 48, 2479-2481.	2.5	164
3	Generation and detection of nonclassical field states by conditional measurements following two-photon resonant interactions. Physical Review A, 1994, 49, 535-547.	2.5	153
4	Coherent quantum transport in photonic lattices. Physical Review A, 2013, 87, .	2.5	146
5	Intrinsic decoherence in the atom-field interaction. Physical Review A, 1993, 48, 3900-3905.	2.5	145
6	On-chip generation of high-order single-photon W-states. Nature Photonics, 2014, 8, 791-795.	31.4	109
7	Implementation of quantum and classical discrete fractional Fourier transforms. Nature Communications, 2016, 7, 11027.	12.8	81
8	Classical Analogue of Displaced Fock States and Quantum Correlations in Glauber-Fock Photonic Lattices. Physical Review Letters, 2011, 107, 103601.	7.8	79
9	Decoherence in atom–field interactions: A treatment using superoperator techniques. Physics Reports, 2006, 432, 1-41.	25.6	75
_			
10	Glauber–Fock photonic lattices. Optics Letters, 2010, 35, 2409.	3.3	62
10	Glauber–Fock photonic lattices. Optics Letters, 2010, 35, 2409. Large-scale fluctuations in the driven Jaynes-Cummings model. Physical Review A, 1994, 49, 1993-1998.	3.3 2.5	56
11	Large-scale fluctuations in the driven Jaynes-Cummings model. Physical Review A, 1994, 49, 1993-1998. Perfect transfer of path-entangled photons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>J</mml:mi><mml:mi>></mml:mi>></mml:math> photonic	2.5	56
11 12	Large-scale fluctuations in the driven Jaynes-Cummings model. Physical Review A, 1994, 49, 1993-1998. Perfect transfer of path-entangled photons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>><mml:mi>></mml:mi></mml:mi>></mml:math> photonic lattices. Physical Review A, 2013, 87, .	2.5 2.5	56 55
11 12 13	Large-scale fluctuations in the driven Jaynes-Cummings model. Physical Review A, 1994, 49, 1993-1998. Perfect transfer of path-entangled photons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>><mml:mi>></mml:mi></mml:mi>></mml:math> photonic lattices. Physical Review A, 2013, 87. Discriminating field mixtures from macroscopic superpositions. Physical Review A, 1993, 48, 3168-3173. Generating photon-encoded <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi></mml:math> states in multiport waveguide-array systems.	2.5 2.5 2.5	56 55 54
11 12 13	Large-scale fluctuations in the driven Jaynes-Cummings model. Physical Review A, 1994, 49, 1993-1998. Perfect transfer of path-entangled photons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>></mml:mi>>></mml:math> photonic lattices. Physical Review A, 2013, 87, . Discriminating field mixtures from macroscopic superpositions. Physical Review A, 1993, 48, 3168-3173. Generating photon-encoded <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi></mml:math> states in multiport waveguide-array systems. Physical Review A, 2013, 87, . Solution of the Schrådinger equation for time-dependent 1D harmonic oscillators using the	2.5 2.5 2.5	56 55 54 48
11 12 13 14	Large-scale fluctuations in the driven Jaynes-Cummings model. Physical Review A, 1994, 49, 1993-1998. Perfect transfer of path-entangled photons in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>><mml:mi>></mml:mi>></mml:mi>></mml:math> photonic lattices. Physical Review A, 2013, 87. Discriminating field mixtures from macroscopic superpositions. Physical Review A, 1993, 48, 3168-3173. Generating photon-encoded <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi></mml:math> states in multiport waveguide-array systems. Physical Review A, 2013, 87. Solution of the Schrådinger equation for time-dependent 1D harmonic oscillators using the orthogonal functions invariant. Journal of Physics A, 2003, 36, 2069-2076.	2.5 2.5 2.5 1.6	5655544846

#	Article	IF	Citations
19	Generation and Properties of Superpositions of Displaced Fock States. Journal of Modern Optics, 1995, 42, 1741-1754.	1.3	43
20	Solution to the master equation for a quantized cavity mode. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1998, 10, 671-674.	0.9	43
21	Coherent states for the time dependent harmonic oscillator: the step function. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 311, 1-5.	2.1	42
22	Generation of Airy solitary-like wave beams by acceleration control in inhomogeneous media. Optics Express, 2011, 19, 16448.	3.4	42
23	Cooperativity and Entanglement of Atom-field States. Journal of Modern Optics, 1993, 40, 1605-1630.	1.3	41
24	Quantum-state engineering of a trapped ion by coherent-state superpositions. Physical Review A, 1999, 59, 2920-2925.	2.5	41
25	Journeys from quantum optics to quantum technology. Progress in Quantum Electronics, 2017, 54, 19-45.	7.0	41
26	Interaction of Superpositions of Coherent States of Light with Two-level Atoms. Journal of Modern Optics, 1992, 39, 1441-1459.	1.3	39
27	Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder. Scientific Reports, 2015, 5, 17339.	3.3	39
28	Tailoring the correlation and anticorrelation behavior of path-entangled photons in Glauber-Fock oscillator lattices. Physical Review A, 2012, 85, .	2.5	38
29	Interaction of Squeezed Light with Two-level Atoms. Journal of Modern Optics, 1992, 39, 2481-2499.	1.3	37
30	Observation of Bloch-like revivals in semi-infinite Glauber–Fock photonic lattices. Optics Letters, 2012, 37, 3801.	3.3	37
31	Connecting nth order generalised quantum Rabi models: Emergence of nonlinear spin-boson coupling via spin rotations. Npj Quantum Information, 2018, 4, .	6.7	36
32	Power broadening and shifts of micromaser lineshapes. Optics Communications, 1991, 85, 267-274.	2.1	35
33	Endurance of quantum coherence due to particle indistinguishability in noisy quantum networks. Npj Quantum Information, 2018, 4, .	6.7	35
34	Photon amplification in a two-photon lossless micromaser. Physical Review A, 1994, 50, 1814-1821.	2.5	34
35	Sudden death and long-lived entanglement of two trapped ions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 369, 372-376.	2.1	34
36	Quantum state reconstruction in the presence of dissipation. Journal of Modern Optics, 1999, 46, 555-558.	1.3	32

#	Article	IF	Citations
37	Recovering coherence from decoherence: A method of quantum-state reconstruction. Physical Review A, 1999, 60, 4029-4033.	2.5	31
38	Filtering number states of the vibrational motion of an ion. Physical Review A, 2000, 61, .	2.5	31
39	Unitary Integration of Quantum Liouville-Bloch Equations. Physical Review Letters, 1998, 81, 4785-4789.	7.8	27
40	Jacobi photonic lattices and their SUSY partners. Optics Express, 2014, 22, 987.	3.4	26
41	Ermakov–Lewis symmetry in photonic lattices. Optics Letters, 2014, 39, 2083.	3.3	23
42	Solution to the Time-Dependent Coupled Harmonic Oscillators Hamiltonian with Arbitrary Interactions. Quantum Reports, 2019, 1, 82-90.	1.3	23
43	Amplitude and phase representation of quantum invariants for the time-dependent harmonic oscillator. Physical Review A, 2003, 67, .	2.5	22
44	Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser. Physical Review A, 2005, 71, .	2.5	22
45	Quantumlike systems in classical optics: applications of quantum optical methods. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 404.	2.1	20
46	Optical simulation of Majorana physics. Physical Review A, 2014, 89, .	2.5	20
47	Spectroscopy and critical quantum thermometry in the ultrastrong coupling regime. Quantum Science and Technology, 2021, 6, 025010.	5.8	19
48	Coherent random walks in free space. Optica, 2014, 1, 268.	9.3	18
49	Revival and splitting of a Gaussian beam in gradient index media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 1140.	1.5	18
50	Quantum harmonic oscillator with time-dependent mass. Modern Physics Letters B, 2018, 32, 1850235.	1.9	17
51	Riemann <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>$\hat{I}q$</mml:mi></mml:mrow></mml:math> function from wave-packet dynamics. Physical Review A, 2010, 82, .	2.5	16
52	Application of Perturbation Theory to a Master Equation. Advances in Mathematical Physics, 2016, 2016, 1-7.	0.8	15
53	KvN mechanics approach to the time-dependent frequency harmonic oscillator. Scientific Reports, 2018, 8, 8401.	3.3	15
54	Alternative analysis to perturbation theory in quantum mechanics. European Physical Journal D, 2012, 66, 1.	1.3	14

#	Article	IF	Citations
55	The exact solution of generalized Dicke models via Susskind–Glogower operators. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 095301.	2.1	14
56	Discrete-like diffraction dynamics in free space. Optics Express, 2013, 21, 17951.	3.4	14
57	Propagation and perfect transmission in three-waveguide axially varying couplers. Physical Review A, 2014, 89, .	2.5	14
58	Operator approach to quantum optomechanics. Physica Scripta, 2015, 90, 068010.	2.5	13
59	The von Neumann Entropy for Mixed States. Entropy, 2019, 21, 49.	2.2	13
60	On the Interaction of Two-level Atoms with Superpositions of Coherent States of Light. Journal of Modern Optics, 1995, 42, 1547-1552.	1.3	12
61	Reconstruction of quasiprobability distribution functions of the cavity field considering field and atomic decays. Optics Communications, 2017, 400, 69-73.	2.1	12
62	Mathematical and diffractive modeling of self-healing. Optics Express, 2018, 26, 12219.	3.4	12
63	Light propagation in inhomogeneous media, coupled quantum harmonic oscillators and phase transitions. Scientific Reports, 2019, 9, 16800.	3.3	12
64	Nonextensive approach to decoherence in quantum mechanics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 279, 56-60.	2.1	11
65	Direct measurement of quasiprobability distributions in cavity QED. Physical Review A, 2003, 68, .	2.5	11
66	MODELING NON-LINEAR COHERENT STATES IN FIBER ARRAYS. International Journal of Quantum Information, 2011, 09, 349-355.	1.1	11
67	Fast Quantum Rabi Model with Trapped Ions. Scientific Reports, 2016, 6, 38961.	3.3	11
68	Coherent delocalization: views of entanglement in different scenarios. Laser Physics Letters, 2015, 12, 085204.	1.4	10
69	Bohm potential is real and its effects are measurable. Optik, 2021, 232, 166341.	2.9	10
70	A number–phase Wigner function. Journal of Optics B: Quantum and Semiclassical Optics, 2003, 5, S339-S341.	1.4	9
71	Optical realization of quantum-mechanical invariants. Optics Letters, 2009, 34, 1459.	3.3	9
72	Optical realization of quantum Kerr medium dynamics. Optics Letters, 2014, 39, 6158.	3.3	9

#	Article	IF	Citations
73	Generation of squeezed SchrĶdinger cats in a tunable cavity filled with a Kerr medium. Journal of Optics (United Kingdom), 2015, 17, 065202.	2.2	9
74	The Pegg–Barnett phase operator and the discrete Fourier transform. Physica Scripta, 2016, 91, 043008.	2.5	9
75	Airy beam propagation: autofocusing, quasi-adiffractional propagation, and self-healing. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 711.	1.5	9
76	Several Ways to Solve the Jaynes-Cummings Model. Applied Mathematics and Information Sciences, 2015, 9, 299-303.	0.5	9
77	Purifying a thermal field in a lossless micromaser. Physical Review A, 1995, 51, 5032-5034.	2.5	8
78	Optical realization of a quantum beam splitter. Optics Letters, 2008, 33, 1966.	3.3	8
79	Interaction of quantized light with a two-level atom: comparison between the Stark and Kerr effects. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 205, 51-54.	2.1	7
80	Generalized qubits of the vibrational motion of a trapped ion. Physical Review A, 2002, 65, .	2.5	7
81	Quantum-Like Entanglement in Classical Optics. Optics and Photonics News, 2007, 18, 38.	0.5	7
82	Degree of polarization and quantum-mechanical purity. Journal of the European Optical Society-Rapid Publications, 0, 3, .	1.9	7
83	Engineering nonlinear coherent states as photon-added and photon-subtracted coherent states. International Journal of Quantum Information, 2014, 12, 1560005.	1.1	7
84	Dynamics of accelerating Bessel solutions of Maxwell's equations. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 2047.	1.5	7
85	Unitary transformation approach for the trapped ion dynamics. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 21-23.	1.4	6
86	DYNAMICS OF TWO ATOMS COUPLED TO A CAVITY FIELD. Modern Physics Letters B, 2003, 17, 219-224.	1.9	6
87	Solution to the Landau–Zener problem via Susskind–Glogower operators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3770-3774.	2.1	6
88	NOON states in entangled cavities. Optics Communications, 2011, 284, 3345-3347.	2.1	6
89	Searching for structure beyond parity in the two-qubit Dicke model. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 135306.	2.1	6
90	Generalized Schrödinger cat states and their classical emulation. Physical Review A, 2016, 93, .	2.5	6

#	Article	IF	Citations
91	Exact and approximated solutions for the harmonic and anharmonic repulsive oscillators: Matrix method. European Physical Journal D, 2020, 74, 1.	1.3	6
92	Propagation of light in linear and quadratic GRIN media: The Bohm potential. Optics Communications, 2021, 490, 126947.	2.1	6
93	A Hermitian operator conjugate to the number operator. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1997, 9, L1-L3.	0.9	5
94	Vibrational superposition states without rotating wave approximation. Journal of Modern Optics, 2000, 47, 2133-2136.	1.3	5
95	ANALYTICAL OPERATOR SOLUTION OF MASTER EQUATIONS DESCRIBING PHASE-SENSITIVE PROCESSES. International Journal of Modern Physics B, 2001, 15, 1127-1134.	2.0	5
96	ENTROPY OPERATOR AND ASSOCIATED WIGNER FUNCTION. International Journal of Quantum Information, 2007, 05, 149-155.	1.1	5
97	Rabi oscillations in a quantum dot-cavity system coupled to a nonzero temperature phonon bath. Physica Scripta, 2008, 77, 065704.	2.5	5
98	Classical analogues to quantum nonlinear coherent states in photonic lattices. Optics Communications, 2011, 284, 1833-1836.	2.1	5
99	Relation between the Glauber–Sudarshan and Kirkwood–Rihaczek distribution functions. Journal of Modern Optics, 2013, 60, 726-730.	1.3	5
100	A squeeze-like operator approach to position-dependent mass in quantum mechanics. Journal of Mathematical Physics, 2014, 55, .	1.1	5
101	A classical simulation of nonlinear Jaynes–Cummings and Rabi models in photonic lattices: reply to comment. Optics Express, 2014, 22, 1784.	3.4	5
102	Field's entropy in the atom–field interaction: Statistical mixture of coherent states. Annals of Physics, 2017, 379, 150-158.	2.8	5
103	Two-particle four-point correlations in dynamically disordered tight-binding networks. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 024002.	1.5	5
104	Normalization corrections to perturbation theory based on a matrix method. Journal of Modern Optics, 2018, 65, 978-986.	1.3	5
105	Generation of NOON States in Waveguide Arrays. Annalen Der Physik, 2019, 531, 1900250.	2.4	5
106	A trapped ion with time-dependent frequency interaction with a laser field. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, S618-S620.	1.4	4
107	On the quantum phase problem. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, \$155-\$157.	1.4	4
108	A photonic crystal realization of a phase driven two-level atom. Optics Communications, 2013, 292, 87-91.	2.1	4

#	Article	IF	CITATIONS
109	Photon transport in binary photonic lattices. Physica Scripta, 2013, 87, 038116.	2.5	4
110	Phase state and related nonlinear coherent states. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1335.	2.1	4
111	Generating non-classical light inside an optical cavity by depositing photons. Journal of Modern Optics, 2017, 64, 2262-2267.	1.3	4
112	Time-dependent coupled harmonic oscillators: Classical and quantum solutions. International Journal of Modern Physics E, 2020, 29, 2075001.	1.0	4
113	Solution of the Schr�dinger Equation for a Linear Potential using the Extended Baker-Campbell-Hausdorff Formula. Applied Mathematics and Information Sciences, 2015, 9, 175-181.	0.5	4
114	Direct measurement of the Q-function in a lossy cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 307, 179-182.	2.1	3
115	Quantum dynamics in single-spin measurement. Physical Review B, 2005, 71, .	3.2	3
116	Useful transformations: From ion-laser interactions to master equations. Laser Physics, 2008, 18, 344-348.	1.2	3
117	Unifying distribution functions: some lesser known distributions. Applied Optics, 2008, 47, E13.	2.1	3
118	High NOON states in trapped ions. Physica Scripta, 2012, T147, 014028.	2.5	3
119	Optical realization of the atom–field interaction in waveguide lattices. Physica Scripta, 2012, T147, 014023.	2.5	3
120	SchrĶdinger like equation for wavelets. AIP Advances, 2016, 6, 015202.	1.3	3
121	Ringing revivals produced by non classical fields generated by conditional measurements. Optik, 2019, 185, 721-725.	2.9	3
122	Quasiprobability Distribution Functions from Fractional Fourier Transforms. Symmetry, 2019, 11, 344.	2.2	3
123	Approximate evolution for a system composed by two coupled Jaynes–Cummings Hamiltonians. Physica Scripta, 2020, 95, 034008.	2.5	3
124	Comment on "Time-dependent coupled harmonic oscillators―[J. Math. Phys. 53, 052101 (2012)]. Journal of Mathematical Physics, 2020, 61, 114101.	1.1	3
125	Intrinsic decoherence for the displaced harmonic oscillator. Pramana - Journal of Physics, 2022, 96, 1.	1.5	3
126	Self-rotating wave approximation via symmetric ordering of ladder operators. Journal of Modern Optics, 2007, 54, 1497-1510.	1.3	2

#	Article	lF	Citations
127	Intrinsic decoherence in the interaction of two fields with a two-level atom. Annalen Der Physik, 2009, 18, 454-458.	2.4	2
128	PERTURBATIVE APPROACH TO DIATOMIC LATTICES. International Journal of Quantum Information, 2012, 10, 1250072.	1.1	2
129	Exact solution of the ionâ€laser interaction in all regimes. Annalen Der Physik, 2012, 524, 107-111.	2.4	2
130	Ultracold two-level atom in a quadratic potential. Optics Communications, 2015, 349, 120-124.	2.1	2
131	Generalized revival and splitting of an arbitrary optical field in GRIN media. Optics Express, 2016, 24, 10445.	3.4	2
132	Exact solution to laser rate equations: three-level laser as a Morse-like oscillator. Journal of Modern Optics, 2016, 63, 1521-1524.	1.3	2
133	Discrete fractional Fourier transform: Vandermonde approach. IMA Journal of Applied Mathematics, 0,	1.6	2
134	London-modified coherent states: statistical properties and interaction with a two-level atom. Journal of Modern Optics, 2021, 68, 196-201.	1.3	2
135	Exact solution of a non-stationary cavity with one intermode interaction. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2873.	2.1	2
136	Adding and subtracting energy quanta of the harmonic oscillator. Journal of Modern Optics, 1999, 46, 1641-1656.	1.3	2
137	Conversion of any finite bandwidth optical field into a shape invariant beam. OSA Continuum, $2018, 1, 604$.	1.8	2
138	Pegg–Barnett coherent states. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 370.	2.1	2
139	Cavity field reconstruction at finite temperature. Journal of Modern Optics, 2000, 47, 2127-2131.	1.3	1
140	Superposition of Coherent States on a Truncated von Neumann Lattice. Physica Scripta, 2004, 70, 14-16.	2.5	1
141	Many fields interaction: Beam splitters and waveguide arrays. Annalen Der Physik, 2011, 523, 402-407.	2.4	1
142	An optical analog of quantum optomechanics. Physica Scripta, 2015, 90, 074004.	2.5	1
143	Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution. Entropy, 2016, 18, 346.	2.2	1
144	Decoherence in quantum lossy systems: superoperator and matrix techniques. European Physical Journal D, 2017, 71, 1.	1.3	1

#	Article	IF	CITATIONS
145	Schmidt decomposition in the interaction of a three-level atom and a quantized field. European Physical Journal D, 2018, 72, 1.	1.3	1
146	Purification of the atom-field interaction Hamiltonian. Physics Open, 2019, 1, 100007.	1.5	1
147	Dynamical analysis of mass–spring models using Lie algebraic methods. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 123193.	2.6	1
148	Ermakov-Lewis Invariant for Two Coupled Oscillators. Journal of Physics: Conference Series, 2020, 1540, 012009.	0.4	1
149	Relation between the entropy and the linear entropy in the ion–laser interaction. Journal of Modern Optics, 2020, 67, 805-810.	1.3	1
150	Ion-laser-like interaction in optomechanical systems with Kerr nonlinearities. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 408, 127490.	2.1	1
151	Kapitza–Dirac photonic lattices. Optics Letters, 2021, 46, 4690.	3.3	1
152	A family of exact eigenstates for a single trapped ion interacting with a laser field. Journal of Modern Optics, 2003, 50, 265-273.	1.3	1
153	Quantum state reconstruction in the presence of dissipation. Journal of Modern Optics, 1999, 46, 555-558.	1.3	1
154	Squeeze operators in classical and quantum scenarios. , 2018, , .		1
155	Equivalence between mirror-field-atom and ion-laser interactions. Applied Mathematics and Information Sciences, 2013, 7, 1311-1315.	0.5	1
156	Generation of MOON states in ion-laser interactions. Quantum Information Review, 2013, 1, 19-22.	0.3	1
157	Observation of noise-assisted energy transport in dynamically disordered photonic lattices. , 2016, , .		1
158	Airy eigenstates and their relation to coordinate eigenstates. Results in Physics, 2021, 31, 104904.	4.1	1
159	Implementation of Quantum and Classical Discrete Fractional Fourier Transforms., 2015,,.		1
160	Bohm potential for the time dependent harmonic oscillator. Journal of Mathematical Physics, 2021, 62, 122103.	1.1	1
161	On the possibility of field-state reconstruction in non-ideal cavities. AIP Conference Proceedings, 2000, , .	0.4	O
162	Squeezed states and uncertainty relations. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, S453-S454.	1.4	0

#	Article	IF	CITATIONS
163	Efficient information swapping scheme in cavity QED. Journal of Modern Optics, 2004, 51, 1089-1090.	1.3	O
164	Direct Measurement of Quasiprobabilities in Lossy Cavities. European Physical Journal A, 2004, 20, 73-76.	0.2	0
165	Scheme to measure squeezing and phase properties of a harmonic oscillator. Journal of Modern Optics, 2005, 52, 1751-1756.	1.3	O
166	Displaced Fock states and photon correlations in Glauber-Fock photonic lattices., 2011,,.		O
167	Quantum state transformations by multiport array beam splitters. , 2012, , .		O
168	Evolution dynamics of Helmholtz Bessel beams. , 2013, , .		O
169	Coherent quantum transport in waveguide lattices. , 2013, , .		O
170	Ion-quantized field interaction in two regimes. Physica Scripta, 2014, 89, 125101.	2. 5	0
171	Ion-laser interaction in dispersive regimes: solution using squeeze operators. Journal of Modern Optics, 2015, 62, 1442-1445.	1.3	O
172	Entropy-Growth in the Universe: Some Plausible Scenarios. International Journal of Theoretical Physics, 2017, 56, 1558-1564.	1.2	0
173	Quantum-classical analogies in waveguide arrays: From Fourier transforms to ion-laser interactions. AIP Conference Proceedings, 2018, , .	0.4	O
174	Structure invariant wave packets. Physica Scripta, 2018, 93, 124005.	2. 5	0
175	Exact solution of degenerate and nondegenerate optical parametric oscillator coupled with a squeezed thermal bath. Modern Physics Letters B, 2018, 32, 1850247.	1.9	O
176	Generation of quasi-rectangle-states of the vibrational motion of an ion. Physica Scripta, 2020, 95, 054002.	2.5	0
177	Generation of Talbot-like fields. Scientific Reports, 2021, 11, 16262.	3.3	O
178	Multiphoton processes via conditional measurements in the two-field interaction. Journal of Optics (United Kingdom), 2021, 23, 095201.	2.2	0
179	Time-dependent harmonic oscillators and SUSY in time domain. Physica Scripta, 2021, 96, 125218.	2.5	0
180	10.1007/s11490-008-3025-3. , 2010, 18, 344.		0

#	Article	IF	Citations
181	Observation of Glauber-Fock dynamics in photonic lattices. , 2011, , .		O
182	Observation of Bloch-like oscillations in Glauber-Fock oscillator lattices. , 2012, , .		0
183	Generation of multipartite single photon W states in waveguide lattices. , 2013, , .		O
184	Evolution dynamics of vectorial Bessel beams. , 2013, , .		0
185	Comment:A two-level atom in a cavity with a moving mirror. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 069901.	0.5	O
186	Quantum-classical analogies in photonic lattices. , 2014, , .		0
187	Two-photon evolution equation for multiport optical systems. , 2015, , .		O
188	Endurance of photon indistinguishability in noisy quantum networks. , 2018, , .		0
189	Entropy in the Atom-Field Interaction: Mixed Initial States. , 2018, , .		O
190	Squeeze Operators in Classical Scenarios. Applied Mathematics and Information Sciences, 2019, 13, 183-187.	0.5	0
191	Propagation of a Gaussian-top-hat function: Self-focusing properties. Results in Physics, 2022, 33, 105118.	4.1	O
192	Bohm approach to the Gouy phase shift. Optik, 2022, 252, 168468.	2.9	0
193	Approximate solutions for the ion-laser interaction in the high intensity regime: matrix method perturbative analysis. Optical and Quantum Electronics, 2022, 54, 1.	3.3	O
194	Two-mode squeezed state generation using the Bohm potential. Modern Physics Letters B, 2022, 36, .	1.9	0