List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7871845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Exploratory Study on the Physical Activity Health Paradox—Musculoskeletal Pain and Cardiovascular Load during Work and Leisure in Construction and Healthcare Workers. International Journal of Environmental Research and Public Health, 2022, 19, 2751.	2.6	7
2	Designing industrial work to be â€~just right' to promote healthÂ- a study protocol for a goldilocks work intervention. BMC Public Health, 2022, 22, 381.	2.9	3
3	Associations between perceived quantitative work demands at different organisational levels and pain and sickness absence in eldercare workers: a multi-level longitudinal analysis. International Archives of Occupational and Environmental Health, 2022, 95, 993-1001.	2.3	2
4	Postpandemic hybrid work: opportunities and challenges for physical activity and public health. British Journal of Sports Medicine, 2022, 56, 1203-1204.	6.7	13
5	Nursing Home, Ward and Worker Level Determinants of Perceived Quantitative Work Demands: A Multi-Level Cross-Sectional Analysis in Eldercare. Annals of Work Exposures and Health, 2022, 66, 1033-1043.	1.4	1
6	Can a metric combining arm elevation and trapezius muscle activity predict neck/shoulder pain? A prospective cohort study in construction and healthcare. International Archives of Occupational and Environmental Health, 2021, 94, 647-658.	2.3	4
7	Lessons Learned. Journal of Applied Biomechanics, 2021, 37, 1.	0.8	0
8	Working from home during the COVID-19 outbreak in Sweden: effects on 24-h time-use in office workers. BMC Public Health, 2021, 21, 528.	2.9	63
9	Development and Implementation of â€Just Right' Physical Behavior in Industrial Work Based on the Goldilocks Work Principle—A Feasibility Study. International Journal of Environmental Research and Public Health, 2021, 18, 4707.	2.6	15
10	Effects of Two Randomized and Controlled Multi-Component Interventions Focusing On 24-Hour Movement Behavior among Office Workers: A Compositional Data Analysis. International Journal of Environmental Research and Public Health, 2021, 18, 4191.	2.6	12
11	Physical Behaviours in Brazilian Office Workers Working from Home during the COVID-19 Pandemic, Compared to before the Pandemic: A Compositional Data Analysis. International Journal of Environmental Research and Public Health, 2021, 18, 6278.	2.6	21
12	What Determines Step-Rate at Work? An Investigation of Factors at the Shift, Worker, Ward, and Nursing Home Levels in Eldercare. Annals of Work Exposures and Health, 2021, 65, 919-927.	1.4	0
13	Fatigue, Stress, and Performance during Alternating Physical and Cognitive Tasks—Effects of the Temporal Pattern of Alternations. Annals of Work Exposures and Health, 2021, 65, 1107-1122.	1.4	2
14	Are resident handlings in eldercare wards associated with musculoskeletal pain and sickness absence among the workers? A prospective study based on onsite observations. Scandinavian Journal of Work, Environment and Health, 2021, 47, 609-618.	3.4	2
15	Effects on variation in shoulder, forearm and low back muscle activity from combining seated computer work with other productive office tasks: results from a simulation study. Ergonomics, 2021, , 1-13.	2.1	0
16	Does Childcare Work Promote Cardiorespiratory Fitness and Health? A Cross-Sectional Study of Danish Childcare Workers Based on Accelerometry and Heart Rate Measurements. International Journal of Environmental Research and Public Health, 2021, 18, 12496.	2.6	0
17	Stress-Related Responses to Alternations between Repetitive Physical Work and Cognitive Tasks of Different Difficulties. International Journal of Environmental Research and Public Health, 2020, 17, 8509.	2.6	3
18	Combined Effects of Physical Behavior Compositions and Psychosocial Resources on Perceived Exertion Among Eldercare Workers. Annals of Work Exposures and Health, 2020, 64, 923-935.	1.4	4

#	Article	IF	CITATIONS
19	Sitting, standing and moving during work and leisure among male and female office workers of different age: a compositional data analysis. BMC Public Health, 2020, 20, 826.	2.9	20
20	Can Childcare Work Be Designed to Promote High Intensity Physical Activity for Improved Fitness and Health? A Proof of Concept Study of the Goldilocks Principle. International Journal of Environmental Research and Public Health, 2020, 17, 7419.	2.6	11
21	Consistent individual motor variability traits demonstrated by females performing a long-cycle assembly task under conditions differing in temporal organisation. Applied Ergonomics, 2020, 85, 103046.	3.1	6
22	Time-Based Data in Occupational Studies: The Whys, the Hows, and Some Remaining Challenges in Compositional Data Analysis (CoDA). Annals of Work Exposures and Health, 2020, 64, 778-785.	1.4	31
23	Occupational and Individual Determinants of Work-life Balance among Office Workers with Flexible Work Arrangements. International Journal of Environmental Research and Public Health, 2020, 17, 1418.	2.6	20
24	Can childcare work be designed to promote moderate and vigorous physical activity, cardiorespiratory fitness and health? Study protocol for the Goldilocks-childcare randomised controlled trial. BMC Public Health, 2020, 20, 237.	2.9	6
25	Correction of bias in self-reported sitting time among office workers – a study based on compositional data analysis. Scandinavian Journal of Work, Environment and Health, 2020, 46, 32-42.	3.4	14
26	Effects of Time in Sitting and Standing on Pleasantness, Acceptability, Fatigue, and Pain When Using a Sit–Stand Desk: An Experiment on Overweight and Normal-Weight Subjects. Journal of Physical Activity and Health, 2020, 17, 1222-1230.	2.0	4
27	Equal health at work? Protocol for an observational study of work organisation, workload and musculoskeletal complaints among women and men in grocery retail. BMJ Open, 2020, 10, e032409.	1.9	6
28	Trapezius muscle activity variation during computer work performed by individuals with and without neck-shoulder pain. Applied Ergonomics, 2019, 81, 102908.	3.1	14
29	The effects of moving into an activity-based office on communication, social relations and work demands – A controlled intervention with repeated follow-up. Journal of Environmental Psychology, 2019, 66, 101341.	5.1	31
30	Calibration of Self-Reported Time Spent Sitting, Standing and Walking among Office Workers: A Compositional Data Analysis. International Journal of Environmental Research and Public Health, 2019, 16, 3111.	2.6	18
31	Staff perception of Lean, care-giving, thriving and exhaustion: a longitudinal study in primary care. BMC Health Services Research, 2019, 19, 652.	2.2	15
32	Alternations between physical and cognitive tasks in repetitive work – effect of cognitive task difficulty on fatigue development in women. Ergonomics, 2019, 62, 1008-1022.	2.1	7
33	Consistency of Sedentary Behavior Patterns among Office Workers with Long-Term Access to Sit-Stand Workstations. Annals of Work Exposures and Health, 2019, 63, 583-591.	1.4	9
34	Lean maturity and quality in primary care. Journal of Health Organization and Management, 2019, 33, 141-154.	1.3	17
35	Trunk and upper arm postures in paper mill work. Applied Ergonomics, 2019, 76, 90-96.	3.1	9
36	Variation in upper extremity, neck and trunk postures when performing computer work at a sit-stand station. Applied Ergonomics, 2019, 75, 120-128.	3.1	21

#	Article	IF	CITATIONS
37	Sedentary and Physical Activity Behavior in "Blue-Collar―Workers: A Systematic Review of Accelerometer Studies. Journal of Physical Activity and Health, 2019, 16, 1060-1069.	2.0	25
38	Promoting health and physical capacity during productive work: the Goldilocks Principle. Scandinavian Journal of Work, Environment and Health, 2019, 45, 90-97.	3.4	53
39	Correctness of Self-Reported Task Durations: A Systematic Review. Annals of Work Exposures and Health, 2018, 62, 1-16.	1.4	7
40	The â€~Goldilocks Principle': designing physical activity at work to be â€~just right' for promoting health. British Journal of Sports Medicine, 2018, 52, 818-819.	6.7	40
41	Sitting patterns after relocation to activity-based offices: A controlled study of a natural intervention. Preventive Medicine, 2018, 111, 384-390.	3.4	22
42	Differences in trapezius muscle activation patterns in office workers with and without chronic neck-shoulder pain, as quantified through exposure variation analysis. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 962-966.	0.3	0
43	Self-rated productivity and employee well-being in activity-based offices: The role of environmental perceptions and workspace use. Building and Environment, 2018, 145, 115-124.	6.9	70
44	A comparison of standard and compositional data analysis in studies addressing group differences in sedentary behavior and physical activity. International Journal of Behavioral Nutrition and Physical Activity, 2018, 15, 53.	4.6	67
45	Uncertainty in monetary cost estimates for assessing working postures using inclinometry, observation or self-report. Applied Ergonomics, 2018, 71, 73-77.	3.1	2
46	Implementation of an ergonomics intervention in a Swedish flight baggage handling company—A process evaluation. PLoS ONE, 2018, 13, e0191760.	2.5	1
47	Is objectively measured sitting at work associated with low-back pain? A cross sectional study in the DPhacto cohort. Scandinavian Journal of Work, Environment and Health, 2018, 44, 96-105.	3.4	18
48	Is self-reported time spent sedentary and in physical activity differentially biased by age, gender, body mass index, and low-back pain?. Scandinavian Journal of Work, Environment and Health, 2018, 44, 163-170.	3.4	29
49	Variation at work: alternations between physically and mentally demanding tasks in blue-collar occupations. Ergonomics, 2017, 60, 1218-1227.	2.1	15
50	Sit–Stand Tables With Semi-Automated Position Changes: A New Interactive Approach for Reducing Sitting in Office Work. IISE Transactions on Occupational Ergonomics and Human Factors, 2017, 5, 39-46.	0.8	14
51	Influence of Posture Variation on Shoulder Muscle Activity, Heart Rate, and Perceived Exertion in a Repetitive Manual Task. IISE Transactions on Occupational Ergonomics and Human Factors, 2017, 5, 47-64.	0.8	2
52	Comparison of Sedentary Behaviors in Office Workers Using Sit-Stand Tables With and Without Semiautomated Position Changes. Human Factors, 2017, 59, 782-795.	3.5	14
53	A practical guidance for assessments of sedentary behavior at work: A PEROSH initiative. Applied Ergonomics, 2017, 63, 41-52.	3.1	34
54	A questionnaire measuring staff perceptions of Lean adoption in healthcare: development and psychometric testing. BMC Health Services Research, 2017, 17, 235.	2.2	18

#	Article	IF	CITATIONS
55	Observer variability in posture assessment from video recordings: The effect of partly visible periods. Applied Ergonomics, 2017, 60, 275-281.	3.1	17
56	Precision based guidelines for sub-maximal normalisation task selection for trunk extensor EMG. Journal of Electromyography and Kinesiology, 2017, 37, 41-51.	1.7	11
57	Variability in spatio-temporal pattern of trapezius activity and coordination of hand-arm muscles during a sustained repetitive dynamic task. Experimental Brain Research, 2017, 235, 389-400.	1.5	27
58	Differences in motor variability among individuals performing a standardized short-cycle manual task. Human Movement Science, 2017, 51, 17-26.	1.4	28
59	Influence of Work Pace on Upper Extremity Kinematics and Muscle Activity in a Short-Cycle Repetitive Pick-and-Place Task. Annals of Work Exposures and Health, 2017, 61, 356-368.	1.4	10
60	Daily Shoulder Pain Among Flight Baggage Handlers and its Association With Work Tasks and Upper Arm Postures on the Same Day. Annals of Work Exposures and Health, 2017, 61, 1145-1153.	1.4	8
61	Systematic review of quantitative imaging biomarkers for neck and shoulder musculoskeletal disorders. BMC Musculoskeletal Disorders, 2017, 18, 395.	1.9	14
62	Predicting Directly Measured Trunk and Upper Arm Postures in Paper Mill Work From Administrative Data, Workers' Ratings and Posture Observations. Annals of Work Exposures and Health, 2017, 61, 207-217.	1.4	10
63	A research framework for the development and implementation of interventions preventing work-related musculoskeletal disorders. Scandinavian Journal of Work, Environment and Health, 2017, 43, 526-539.	3.4	65
64	A Comparison of Two Strategies for Building an Exposure Prediction Model. Annals of Occupational Hygiene, 2016, 60, mev072.	1.9	5
65	ErgoVSM: A Tool for Integrating Value Stream Mapping and Ergonomics in Manufacturing. Human Factors and Ergonomics in Manufacturing, 2016, 26, 191-204.	2.7	33
66	Is prolonged sitting at work associated with the time course of neck–shoulder pain? A prospective study in Danish blue-collar workers. BMJ Open, 2016, 6, e012689.	1.9	25
67	Temporal patterns of sitting at work are associated with neck–shoulder pain in blue-collar workers: a cross-sectional analysis of accelerometer data in the DPHACTO study. International Archives of Occupational and Environmental Health, 2016, 89, 823-833.	2.3	20
68	Full-Shift Trunk and Upper Arm Postures and Movements Among Aircraft Baggage Handlers. Annals of Occupational Hygiene, 2016, 60, 977-990.	1.9	35
69	The effect of sit-stand workstations to decrease sedentariness in office work. Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 465-465.	0.3	0
70	Gender differences in fatigability and muscle activity responses to a short-cycle repetitive task. European Journal of Applied Physiology, 2016, 116, 2357-2365.	2.5	63
71	Are temporal patterns of sitting associated with obesity among blue-collar workers? A cross sectional study using accelerometers. BMC Public Health, 2016, 16, 148.	2.9	27
72	Reliability and criterion validity of an observation protocol for working technique assessments in cash register work. Ergonomics, 2016, 59, 829-839.	2.1	8

#	Article	IF	CITATIONS
73	Observer performance in estimating upper arm elevation angles under ideal viewing conditions when assisted by posture matching software. Applied Ergonomics, 2016, 55, 208-215.	3.1	6
74	Measurement strategy and statistical power in studies assessing gait stability and variability in older adults. Aging Clinical and Experimental Research, 2016, 28, 257-265.	2.9	11
75	Effects of concurrent physical and cognitive demands on muscle activity and heart rate variability in a repetitive upper-extremity precision task. European Journal of Applied Physiology, 2016, 116, 227-239.	2.5	22
76	Systematic review of biochemical biomarkers for neck and upper-extremity musculoskeletal disorders. Scandinavian Journal of Work, Environment and Health, 2016, 42, 103-124.	3.4	20
77	Interventions to reduce sedentary behavior and increase physical activity during productive work: a systematic review. Scandinavian Journal of Work, Environment and Health, 2016, 42, 181-191.	3.4	101
78	Prediction of objectively measured physical activity and sedentariness among blue-collar work using survey questionnaires. Scandinavian Journal of Work, Environment and Health, 2016, 42, 237-45.	3.4	26
79	Bias and Power in Group-Based Epidemiologic Studies of Low-Back Pain Exposure and Outcome – Effects of Study Size and Exposure Measurement Efforts. Annals of Occupational Hygiene, 2015, 59, 439-54.	1.9	4
80	Differences between work and leisure in temporal patterns of objectively measured physical activity among blue-collar workers. BMC Public Health, 2015, 15, 976.	2.9	47
81	Psychosocial Work Factors and Musculoskeletal Pain: A Cross-Sectional Study among Swedish Flight Baggage Handlers. BioMed Research International, 2015, 2015, 1-11.	1.9	30
82	Long-Term Monitoring of Physical Behavior Reveals Different Cardiac Responses to Physical Activity among Subjects with and without Chronic Neck Pain. BioMed Research International, 2015, 2015, 1-11.	1.9	7
83	Effects of concurrent physical and cognitive demands on arm movement kinematics in a repetitive upper-extremity precision task. Human Movement Science, 2015, 42, 89-99.	1.4	12
84	Association between objectively measured sitting time and neck–shoulder pain among blue-collar workers. International Archives of Occupational and Environmental Health, 2015, 88, 1031-1042.	2.3	58
85	Between- and within-subject variance of motor variability metrics in females performing repetitive upper-extremity precision work. Journal of Electromyography and Kinesiology, 2015, 25, 121-129.	1.7	27
86	Nonlinear metrics assessing motor variability in a standardized pipetting task: Between- and within-subject variance components. Journal of Electromyography and Kinesiology, 2015, 25, 557-564.	1.7	20
87	Digging deeper into the assessment of upper arm elevation angles using standard inclinometry. Applied Ergonomics, 2015, 51, 102-103.	3.1	2
88	The combined influence of task accuracy and pace on motor variability in a standardised repetitive precision task. Ergonomics, 2015, 58, 1388-1397.	2.1	19
89	Partly visible periods in posture observation from video: Prevalence and effect on summary estimates of postures in the job. Applied Ergonomics, 2015, 49, 63-69.	3.1	11
90	The ability of non-computer tasks to increase biomechanical exposure variability in computer-intensive office work. Ergonomics, 2015, 58, 50-64.	2.1	12

#	Article	IF	CITATIONS
91	Short- and long-term reliability of heart rate variability indices during repetitive low-force work. European Journal of Applied Physiology, 2015, 115, 803-812.	2.5	27
92	The size and structure of arm movement variability decreased with work pace in a standardised repetitive precision task. Ergonomics, 2015, 58, 128-139.	2.1	32
93	Is what you see what you get? Standard inclinometry of set upper arm elevation angles. Applied Ergonomics, 2015, 47, 242-252.	3.1	20
94	The effect of the presence and characteristics of an outlying group on exposure–outcome associations. Scandinavian Journal of Work, Environment and Health, 2015, 41, 65-74.	3.4	4
95	Statistical Performance of Observational Work Sampling for Assessment of Categorical Exposure Variables: A Simulation Approach Illustrated Using PATH Data. Annals of Occupational Hygiene, 2014, 58, 294-316.	1.9	6
96	Posture variation among office workers when using different information and communication technologies at work and away from work. Ergonomics, 2014, 57, 1678-1686.	2.1	15
97	Musculoskeletal health and work ability in physically demanding occupations: study protocol for a prospective field study on construction and health care workers. BMC Public Health, 2014, 14, 1075.	2.9	29
98	Capturing the Pattern of Physical Activity and Sedentary Behavior: Exposure Variation Analysis of Accelerometer Data. Journal of Physical Activity and Health, 2014, 11, 614-625.	2.0	31
99	Can Cognitive Activities during Breaks in Repetitive Manual Work Accelerate Recovery from Fatigue? A Controlled Experiment. PLoS ONE, 2014, 9, e112090.	2.5	33
100	Cost-efficient assessment of biomechanical exposure in occupational groups, exemplified by posture observation and inclinometry. Scandinavian Journal of Work, Environment and Health, 2014, 40, 252-265.	3.4	39
101	Cluster-based exposure variation analysis. BMC Medical Research Methodology, 2013, 13, 54.	3.1	7
102	Sit–stand desks in call centres: Associations of use and ergonomics awareness with sedentary behavior. Applied Ergonomics, 2013, 44, 517-522.	3.1	96
103	Assessment of time patterns of activity and rest in full-shift recordings of trapezius muscle activity – Effects of the data processing procedure. Journal of Electromyography and Kinesiology, 2013, 23, 540-547.	1.7	19
104	Efficient assessment of exposure to manual lifting using company data. Applied Ergonomics, 2013, 44, 360-365.	3.1	11
105	Cost-efficient measurement strategies for posture observations based on video recordings. Applied Ergonomics, 2013, 44, 609-617.	3.1	32
106	Variation in Muscle Activity Among Office Workers When Using Different Information Technologies at Work and Away From Work. Human Factors, 2013, 55, 911-923.	3.5	17
107	Patterning of children's sedentary time at and away from school. Obesity, 2013, 21, E131-3.	3.0	56
108	Data processing costs for three posture assessment methods. BMC Medical Research Methodology, 2013, 13, 124.	3.1	16

7

#	Article	IF	CITATIONS
109	Motor variability – an important issue in occupational life. Work, 2012, 41, 2527-2534.	1.1	13
110	Variation of force amplitude and its effects on local fatigue. European Journal of Applied Physiology, 2012, 112, 3865-3879.	2.5	39
111	Cost efficiency comparison of four video-based techniques for assessing upper arm postures. Ergonomics, 2012, 55, 350-360.	2.1	34
112	Temporal strategy and performance during a fatiguing short-cycle repetitive task. Ergonomics, 2012, 55, 863-873.	2.1	22
113	Variation between seated and standing/walking postures among male and female call centre operators. BMC Public Health, 2012, 12, 154.	2.9	80
114	Concurrent cognitive task may improve motor work performance and reduce muscle fatigue. Work, 2012, 41, 2893-2896.	1.1	11
115	Data collection costs in industrial environments for three occupational posture exposure assessment methods. BMC Medical Research Methodology, 2012, 12, 89.	3.1	31
116	Accuracy and precision of variance components in occupational posture recordings: a simulation study of different data collection strategies. BMC Medical Research Methodology, 2012, 12, 58.	3.1	15
117	Bias and imprecision in posture percentile variables estimated from short exposure samples. BMC Medical Research Methodology, 2012, 12, 36.	3.1	12
118	Motor variability in occupational health and performance. Clinical Biomechanics, 2012, 27, 979-993.	1.2	226
119	The trade-off between meticulousness and methodological variance in normalization of low back EMG. Work, 2012, 41, 2307-2314.	1.1	0
120	Statistical precision of categorical PATH observations of trunk posture. Work, 2012, 41, 5519-5521.	1.1	1
121	Cost-efficient observation of working postures from video recordings – more videos, more observers or more views per observer?. Work, 2012, 41, 2302-2306.	1.1	9
122	Modeling costs of exposure assessment methods in industrial environments. Work, 2012, 41, 6079-6086.	1.1	4
123	Participative development of packages in the food industry $\hat{a} \in \hat{a}$ evaluation of ergonomics and productivity by objective measurements. Work, 2012, 41, 1751-1755.	1.1	7
124	Reliability of near-infrared spectroscopy for measuring forearm and shoulder oxygenation in healthy males and females. European Journal of Applied Physiology, 2012, 112, 2703-2715.	2.5	26
125	Diversity of tasks and information technologies used by office workers at and away from work. Ergonomics, 2011, 54, 1017-1028.	2.1	15
126	The effect of work pace on workload, motor variability and fatigue during simulated light assembly work. Ergonomics, 2011, 54, 154-168.	2.1	95

#	Article	IF	CITATIONS
127	ITKids Part I: Children's occupations and use of information and communication technologies. Work, 2011, 38, 401-412.	1.1	12
128	ITKids Part II: Variation of postures and muscle activity in children using different information and communication technologies. Work, 2011, 38, 413-427.	1.1	17
129	Optimizing cost-efficiency in mean exposure assessment - cost functions reconsidered. BMC Medical Research Methodology, 2011, 11, 76.	3.1	14
130	Theoretical and Empirical Efficiency of Sampling Strategies for Estimating Upper Arm Elevation. Annals of Occupational Hygiene, 2011, 55, 436-49.	1.9	21
131	Explicit and implicit theories of change when designing and implementing preventive ergonomics interventions – a systematic literature review. Scandinavian Journal of Work, Environment and Health, 2011, 37, 363-375.	3.4	19
132	Muscle contraction force and fatigue. NeuroReport, 2010, 21, 1152-1156.	1.2	6
133	The ability of limited exposure sampling to detect effects of interventions that reduce the occurrence of pronounced trunk inclination. Applied Ergonomics, 2010, 41, 295-304.	3.1	36
134	Cost-Efficient Design of Occupational Exposure Assessment Strategies—A Review. Annals of Occupational Hygiene, 2010, 54, 858-68.	1.9	24
135	Influence of three principles of pacing on the temporal organisation of work during cyclic assembly and disassembly tasks. Ergonomics, 2010, 53, 1347-1358.	2.1	35
136	Upper Arm Postures and Movements in Female Hairdressers across Four Full Working Days. Annals of Occupational Hygiene, 2010, 54, 584-94.	1.9	56
137	Systematic evaluation of observational methods assessing biomechanical exposures at work. Scandinavian Journal of Work, Environment and Health, 2010, 36, 3-24.	3.4	414
138	Differences in muscle load between computer and non-computer work among office workers. Ergonomics, 2009, 52, 1540-1555.	2.1	32
139	Methodological variance associated with normalization of occupational upper trapezius EMG using sub-maximal reference contractions. Journal of Electromyography and Kinesiology, 2009, 19, 416-427.	1.7	51
140	Increased physical work loads in modern work – a necessity for better health and performance?. Ergonomics, 2009, 52, 1215-1225.	2.1	162
141	Changes in the degree of motor variability associated with experimental and chronic neck–shoulder pain during a standardised repetitive arm movement. Experimental Brain Research, 2008, 185, 689-698.	1.5	161
142	Neck postures in air traffic controllers with and without neck/shoulder disorders. Applied Ergonomics, 2008, 39, 255-260.	3.1	21
143	The size of cycle-to-cycle variability in biomechanical exposure among butchers performing a standardised cutting task. Ergonomics, 2008, 51, 1078-1095.	2.1	95
144	Time—A key issue for musculoskeletal health and manufacturing. Applied Ergonomics, 2007, 38, 733-744.	3.1	98

#	Article	IF	CITATIONS
145	Production system design elements influencing productivity and ergonomics. International Journal of Operations and Production Management, 2006, 26, 904-923.	5.9	92
146	Precision of measurements of physical workload during standardised manual handling. Part II: Inclinometry of head, upper back, neck and upper arms. Journal of Electromyography and Kinesiology, 2006, 16, 125-136.	1.7	108
147	Observer reliability of industrial activity analysis based on video recordings. International Journal of Industrial Ergonomics, 2006, 36, 275-282.	2.6	28
148	Changes in physical workload with implementation of mouse-based information technology in air traffic control. International Journal of Industrial Ergonomics, 2006, 36, 613-622.	2.6	52
149	Diversity and variation in biomechanical exposure: What is it, and why would we like to know?. Applied Ergonomics, 2006, 37, 419-427.	3.1	264
150	On the evolution of task-based analysis of manual materials handling, and its applicability in contemporary ergonomics. Applied Ergonomics, 2006, 37, 33-43.	3.1	54
151	An evaluation of methods assessing the physical demands of manual lifting in scaffolding. Applied Ergonomics, 2005, 36, 213-222.	3.1	46
152	An integrated analysis of ergonomics and time consumption in Swedish â€~craft-type' car disassembly. Applied Ergonomics, 2005, 36, 263-273.	3.1	85
153	Task based exposure assessment in ergonomic epidemiology: a study of upper arm elevation in the jobs of machinists, car mechanics, and house painters. Occupational and Environmental Medicine, 2005, 62, 18-27.	2.8	61
154	Task-based estimation of mechanical job exposure in occupational groups. Scandinavian Journal of Work, Environment and Health, 2005, 31, 138-151.	3.4	47
155	Work related shoulder disorders: quantitative exposure-response relations with reference to arm posture. Occupational and Environmental Medicine, 2004, 61, 844-853.	2.8	152
156	Work above shoulder level and degenerative alterations of the rotator cuff tendons: A magnetic resonance imaging study. Arthritis and Rheumatism, 2004, 50, 3314-3322.	6.7	79
157	Job enlargement and mechanical exposure variability in cyclic assembly work. Ergonomics, 2004, 47, 19-40.	2.1	78
158	Precision of measurements of physical workload during standardised manual handling. Part I: Surface electromyography of m. trapezius, m. infraspinatus and the forearm extensors. Journal of Electromyography and Kinesiology, 2004, 14, 443-454.	1.7	90
159	Expo[not-so]sure Reflections on a Tricky Issue in musculoskeletal research Scandinavian Journal of Work, Environment and Health, 2004, 30, 173-177.	3.4	2
160	Variability in mechanical exposure within and between individuals performing a highly constrained industrial work task. Ergonomics, 2003, 46, 800-824.	2.1	150
161	Efficient One-Day Sampling of Mechanical Job Exposure Data—A Study Based on Upper Trapezius Activity in Cleaners and Office Workers. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2003, 64, 196-211.	0.4	64
162	Efficient One-Day Sampling of Mechanical Job Exposure Data—A Study Based on Upper Trapezius Activity in Cleaners and Office Workers. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2003, 64, 196-211.	0.4	2

#	Article	IF	CITATIONS
163	A case study evaluating the ergonomic and productivity impacts of partial automation strategies in the electronics industry. International Journal of Production Research, 2002, 40, 4059-4075.	7.5	95
164	Statistical power and measurement allocation in ergonomic intervention studies assessing upper trapezius EMG amplitude. Journal of Electromyography and Kinesiology, 2002, 12, 45-57.	1.7	99
165	Activity in five muscles during joint securing using pneumatic nutrunners. International Journal of Industrial Ergonomics, 2002, 29, 21-32.	2.6	14
166	Group-based measurement strategies in exposure assessment explored by bootstrapping. Scandinavian Journal of Work, Environment and Health, 2001, 27, 125-132.	3.4	53
167	The accuracy of self-rating of exposure to repetitive work. International Journal of Industrial Ergonomics, 2000, 25, 239-246.	2.6	13
168	Muscle Activity during Securings with Pneumatic Nutrunners. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 21-24.	0.3	0
169	Association between Assembly Work Electromyography and Discomfort as Identified by Video-Computer Interaction. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 268-271.	0.3	0
170	Relationships between Cycle Time and Mechanical Exposure within and between Individuals in Repetitive Assembly Work. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 162-165.	0.3	0
171	Integrating Production Engineering and Ergonomics in Production System Design. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 5-501-5-504.	0.3	0
172	Design of Ergonomic Intervention Studies Using Exposure Variability Data — An Example Based on Assembly Work EMG. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 5-618-5-618.	0.3	8
173	Prediction of shoulder flexion endurance from personal factors. International Journal of Industrial Ergonomics, 1999, 24, 315-329.	2.6	56
174	Shoulder-arm muscle load and performance during control operation in forestry machines. Applied Ergonomics, 1997, 28, 85-97.	3.1	43
175	Motor control and cardiovascular responses during isoelectric contractions of the upper trapezius muscle: evidence for individual adaptation strategies. European Journal of Applied Physiology, 1997, 76, 434-444.	2.5	41
176	Interactive effect of ergonomics and production engineering on shoulder-neck exposure — A case study of assembly work in China and Sweden. International Journal of Industrial Ergonomics, 1997, 20, 75-85.	2.6	19
177	The statistical confidence of load estimates based on ramp calibration of upper trapezius EMG. Journal of Electromyography and Kinesiology, 1996, 6, 59-65.	1.7	6
178	Ergonomic effects of a management-based rationalization in assembly work — a case study. Applied Ergonomics, 1996, 27, 89-99.	3.1	56
179	Physiological comparison of three interventions in light assembly work: reduced work pace, increased break allowance and shortened working days. International Archives of Occupational and Environmental Health, 1996, 68, 94-108.	2.3	8
180	Normalization of surface EMG amplitude from the upper trapezius muscle in ergonomic studies — A review. Journal of Electromyography and Kinesiology, 1995, 5, 197-226.	1.7	405

#	Article	IF	CITATIONS
181	Normalizing upper trapezius EMG amplitude: Comparison of ramp and constant force procedures. Journal of Electromyography and Kinesiology, 1995, 5, 245-250.	1.7	19
182	Normalizing upper trapezius EMG amplitude: Comparison of different procedures. Journal of Electromyography and Kinesiology, 1995, 5, 251-257.	1.7	51
183	Normalization of upper trapezius EMG amplitude in ergonomic studies. Journal of Electromyography and Kinesiology, 1995, 5, 195-196.	1.7	11
184	Assessment of physical work load in epidemiologic studies: concepts, issues and operational considerations. Ergonomics, 1994, 37, 979-988.	2.1	385
185	The influence of exercise/rest schedule on the physiological and psychophysical response to isometric shoulder-neck exercise. European Journal of Applied Physiology and Occupational Physiology, 1993, 67, 528-539.	1.2	55
186	Can occupational guidelines for work-rest schedules be based on endurance time data?. Ergonomics, 1992, 35, 253-259.	2.1	34
187	Physiological effects of micropauses in isometric handgrip exercise. European Journal of Applied Physiology and Occupational Physiology, 1991, 63, 405-411.	1.2	48
188	Quantifying variation in physical load using exposure-vs-time data. Ergonomics, 1991, 34, 1455-1468.	2.1	166
189	Electromyographic activity in the shoulder-neck region according to arm position and glenohumeral torque. European Journal of Applied Physiology and Occupational Physiology, 1990, 61, 370-379.	1.2	90
190	Influence of angular velocity and movement frequency on development of fatigue in repeated isokinetic knee extensions. European Journal of Applied Physiology and Occupational Physiology, 1989, 59, 80-88.	1.2	16