Klaus Schulze-Osthoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7871685/publications.pdf

Version: 2024-02-01

336 papers 30,610 citations

91 h-index 161 g-index

344 all docs

344 docs citations

times ranked

344

37124 citing authors

#	Article	lF	CITATIONS
1	Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death and Differentiation, 2003, 10, 76-100.	11.2	932
2	Apoptosis signaling by death receptors. FEBS Journal, 1998, 254, 439-459.	0.2	847
3	Apoptotic Cells Induce Migration of Phagocytes via Caspase-3-Mediated Release of a Lipid Attraction Signal. Cell, 2003, 113, 717-730.	28.9	817
4	Distinct effects of thioredoxin and antioxidants onthe activation of transcription factors NF-kappa B and AP-1 Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1672-1676.	7.1	666
5	Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature, 1995, 375, 81-83.	27.8	643
6	T-helper-1-cell cytokines drive cancer into senescence. Nature, 2013, 494, 361-365.	27.8	601
7	Small Stress Proteins as Novel Regulators of Apoptosis. Journal of Biological Chemistry, 1996, 271, 16510-16514.	3.4	559
8	Regulation of Apoptosis by Alternative Pre-mRNA Splicing. Molecular Cell, 2005, 19, 1-13.	9.7	558
9	PARP is important for genomic stability but dispensable in apoptosis. Genes and Development, 1997, 11, 2347-2358.	5.9	511
10	Reduced Loading of Intracellular Ca2+ Stores and Downregulation of Capacitative Ca2+Influx in Bcl-2–Overexpressing Cells. Journal of Cell Biology, 2000, 148, 857-862.	5.2	435
11	Activation and Caspase-mediated Inhibition of PARP: A Molecular Switch between Fibroblast Necrosis and Apoptosis in Death Receptor Signaling. Molecular Biology of the Cell, 2002, 13, 978-988.	2.1	434
12	Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB Journal, 1994, 8, 1131-1138.	0.5	419
13	Cell nucleus and DNA fragmentation are not required for apoptosis Journal of Cell Biology, 1994, 127, 15-20.	5. 2	419
14	Transdifferentiation of Vascular Smooth Muscle Cells to Macrophage-Like Cells During Atherogenesis. Circulation Research, 2014, 115, 662-667.	4. 5	412
15	The Role of Caspases in Development, Immunity, and Apoptotic Signal Transduction. Immunity, 1999, 10, 629-639.	14.3	382
16	Bcl-2 down-regulates the activity of transcription factor NF-kappaB induced upon apoptosis Journal of Cell Biology, 1996, 134, 13-23.	5 . 2	353
17	Cancer stem cell markers in common cancers – therapeutic implications. Trends in Molecular Medicine, 2008, 14, 450-460.	6.7	353
18	The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB Journal of Experimental Medicine, 1996, 183, 1829-1840.	8.5	331

#	Article	IF	Citations
19	Regulation of NF-κB Activation by MAP Kinase Cascades. Immunobiology, 1997, 198, 35-49.	1.9	328
20	Sesquiterpene Lactones Specifically Inhibit Activation of NF-κB by Preventing the Degradation of lκB-α and lκB-β. Journal of Biological Chemistry, 1998, 273, 1288-1297.	3.4	326
21	Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death and Differentiation, 2001, 8, 1197-1206.	11.2	325
22	Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. Journal of Experimental Medicine, 2011, 208, 2291-2303.	8.5	324
23	Anticancer Drugs Induce Caspase-8/FLICE Activation and Apoptosis in the Absence of CD95 Receptor/Ligand Interaction. Blood, 1999, 93, 3053-3063.	1.4	284
24	Macrophage-derived angiogenesis factors. , 1991, 51, 195-216.		282
25	Extracellular ATP Activates Transcription Factor NF-κB through the P2Z Purinoreceptor by Selectively Targeting NF-κB p65 (RelA). Journal of Cell Biology, 1997, 139, 1635-1643.	5.2	273
26	Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death and Differentiation, 1998, 5, 997-1000.	11.2	270
27	Redox signalling by transcription factors NF-κB and AP-1 in lymphocytes. Biochemical Pharmacology, 1995, 50, 735-741.	4.4	266
28	P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Letters, 1999, 447, 71-75.	2.8	259
29	The Enhanced Liver Fibrosis (ELF) score: Normal values, influence factors and proposed cut-off values. Journal of Hepatology, 2013, 59, 236-242.	3.7	251
30	Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene, 2000, 19, 4563-4573.	5.9	243
31	Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood, 2001, 97, 1378-1387.	1.4	237
32	New Approaches and Therapeutics Targeting Apoptosis in Disease. Pharmacological Reviews, 2005, 57, 187-215.	16.0	235
33	Activation of Transcription Factor NF-κB and p38 Mitogen-activated Protein Kinase Is Mediated by Distinct and Separate Stress Effector Pathways. Journal of Biological Chemistry, 1997, 272, 12422-12429.	3.4	229
34	Detection of apoptotic caspase activation in sera from patients with chronic HCV infection is associated with fibrotic liver injury. Hepatology, 2004, 40, 1078-1087.	7.3	225
35	Expression and Regulation of Cyclooxygenaseâ€2 in Rat Microglia. FEBS Journal, 1997, 243, 726-731.	0.2	220
36	Migration to Apoptotic "Find-me―Signals Is Mediated via the Phagocyte Receptor G2A. Journal of Biological Chemistry, 2008, 283, 5296-5305.	3.4	213

#	Article	IF	CITATIONS
37	Progression from Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis Is Marked by a Higher Frequency of Th17 Cells in the Liver and an Increased Th17/Resting Regulatory T Cell Ratio in Peripheral Blood and in the Liver. Journal of Immunology, 2016, 196, 97-105.	0.8	210
38	Hydrogen peroxide as a potent activator of T lymphocyte functions. European Journal of Immunology, 1995, 25, 159-165.	2.9	203
39	Differential Regulation and ATP Requirement for Caspase-8 and Caspase-3 Activation during CD95- and Anticancer Drug–induced Apoptosis. Journal of Experimental Medicine, 1998, 188, 979-984.	8.5	198
40	Different forms of cell death induced by putative BCL2 inhibitors. Cell Death and Differentiation, 2009, 16, 1030-1039.	11.2	192
41	Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor NF-κB. FEBS Letters, 1999, 442, 89-94.	2.8	191
42	Non-apoptotic functions of caspases in cellular proliferation and differentiation. Biochemical Pharmacology, 2003, 66, 1453-1458.	4.4	191
43	Cross-Resistance of CD95- and Drug-Induced Apoptosis as a Consequence of Deficient Activation of Caspases (ICE/Ced-3 Proteases). Blood, 1997, 90, 3118-3129.	1.4	189
44	The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia, 2001, 15, 1022-1032.	7.2	179
45	α-Toxin is a mediator of <i>Staphylococcus aureus</i> –induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. Journal of Cell Biology, 2001, 155, 637-648.	5. 2	176
46	The dark side of a tumor suppressor: anti-apoptotic p53. Cell Death and Differentiation, 2008, 15, 959-976.	11.2	175
47	Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene, 2003, 22, 2236-2247.	5.9	172
48	Caspases: more than just killers?. Trends in Immunology, 2001, 22, 31-34.	6.8	167
49	Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia, 2001, 15, 1735-1742.	7.2	162
50	Role of Reactive Oxygen Intermediates in Activation-induced CD95 (APO-1/Fas) Ligand Expression. Journal of Biological Chemistry, 1998, 273, 8048-8055.	3.4	161
51	Prospective biopsy-controlled evaluation of cell death biomarkers for prediction of liver fibrosis and nonalcoholic steatohepatitis. Hepatology, 2012, 55, 455-464.	7.3	157
52	Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo. Blood, 2001, 98, 1542-1548.	1.4	150
53	Enhancement of T Cell Receptor Signaling by a Mild Oxidative Shift in the Intracellular Thiol Pool. Journal of Immunology, 2000, 165, 4319-4328.	0.8	148
54	Caspase activation correlates with the degree of inflammatory liver injury in chronic hepatitis C virus infection. Hepatology, 2001, 34, 758-767.	7.3	148

#	Article	IF	Citations
55	P2X7/P2Z Purinoreceptor-mediated Activation of Transcription Factor NFAT in Microglial Cells. Journal of Biological Chemistry, 1999, 274, 13205-13210.	3.4	144
56	Multiple virulence factors are required for Staphylococcus aureus-induced apoptosis in endothelial cells. Cellular Microbiology, 2005, 7, 1087-1097.	2.1	143
57	Staurosporine and conventional anticancer drugs induce overlapping, yet distinct pathways of apoptosis and caspase activation. Oncogene, 2001, 20, 1193-1202.	5.9	140
58	Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL. Oncogene, 2001, 20, 2190-2196.	5.9	140
59	Guardians of cell death: the Bcl-2 family proteins. Essays in Biochemistry, 2003, 39, 73-88.	4.7	133
60	MRP8/MRP14 impairs endothelial integrity and induces a caspase-dependent and -independent cell death program. Blood, 2007, 109, 2453-2460.	1.4	132
61	Increased hepatotoxicity of tumor necrosis factor-related apoptosis-inducing ligand in diseased human liver. Hepatology, 2007, 46, 1498-1508.	7.3	130
62	Switching Akt: from survival signaling to deadly response. BioEssays, 2009, 31, 492-495.	2.5	130
63	<i>SOX2</i> Expression Associates with Stem Cell State in Human Ovarian Carcinoma. Cancer Research, 2013, 73, 5544-5555.	0.9	129
64	Toll-like receptor 4 plays a crucial role in the immune–adrenal response to systemic inflammatory response syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6392-6397.	7.1	128
65	Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis. Oncogene, 2000, 19, 1181-1190.	5.9	126
66	Comprehensive Genomic and Transcriptomic Analysis for Guiding Therapeutic Decisions in Patients with Rare Cancers. Cancer Discovery, 2021, 11, 2780-2795.	9.4	125
67	Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO-1/Fas) ligand expression in microglial cells. FEBS Letters, 1998, 429, 67-72.	2.8	124
68	RioK1, a New Interactor of Protein Arginine Methyltransferase 5 (PRMT5), Competes with pICln for Binding and Modulates PRMT5 Complex Composition and Substrate Specificity. Journal of Biological Chemistry, 2011, 286, 1976-1986.	3.4	120
69	Lidocaine Induces Apoptosis via the Mitochondrial Pathway Independently of Death Receptor Signaling. Anesthesiology, 2007, 107, 136-143.	2.5	117
70	Performance of Serum microRNAs -122, -192 and -21 as Biomarkers in Patients with Non-Alcoholic Steatohepatitis. PLoS ONE, 2015, 10, e0142661.	2.5	116
71	Agonists of Proteinase-Activated Receptor 2 Induce Cytokine Release and Activation of Nuclear Transcription Factor κB in Human Dermal Microvascular Endothelial Cells. Journal of Investigative Dermatology, 2002, 118, 380-385.	0.7	115
72	Agonists of Proteinase-Activated Receptor-2 Stimulate Upregulation of Intercellular Cell Adhesion Molecule-1 in Primary Human Keratinocytes via Activation of NF-kappa B. Journal of Investigative Dermatology, 2005, 124, 38-45.	0.7	115

#	Article	IF	Citations
73	Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance. Oncogene, 2001, 20, 2749-2760.	5.9	112
74	Staphylococcus aureus α-toxin-induced cell death: predominant necrosis despite apoptotic caspase activation. Cell Death and Differentiation, 2003, 10, 1260-1272.	11.2	112
7 5	p21 Blocks Irradiation-Induced Apoptosis Downstream of Mitochondria by Inhibition of Cyclin-Dependent Kinase–Mediated Caspase-9 Activation. Cancer Research, 2006, 66, 11254-11262.	0.9	112
76	Zinc Oxide Nanoparticles Induce Necrosis and Apoptosis in Macrophages in a p47phox- and Nrf2-Independent Manner. PLoS ONE, 2013, 8, e65704.	2.5	111
77	Adult stem cells and their trans-differentiation potentialâ€" perspectives and therapeutic applications. Journal of Molecular Medicine, 2008, 86, 1301-1314.	3.9	110
78	S100A8/9 induces cell death via a novel, RAGE-independent pathway that involves selective release of Smac/DIABLO and Omi/HtrA2. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 297-311.	4.1	108
79	Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway. EMBO Journal, 2003, 22, 3580-3590.	7.8	107
80	A Novel Member of the lîºB Family, Human lîºB-î¶, Inhibits Transactivation of p65 and Its DNA Binding. Journal of Biological Chemistry, 2006, 281, 12645-12654.	3.4	107
81	Phosphorylation of Atg5 by the Gadd45β–MEKK4-p38 pathway inhibits autophagy. Cell Death and Differentiation, 2013, 20, 321-332.	11.2	107
82	Impaired adrenal stress response in Toll-like receptor 2-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16695-16700.	7.1	106
83	Selenium-mediated inhibition of transcription factor NF-κ B and HIV-1 LTR promoter activity. Archives of Toxicology, 1996, 70, 277-283.	4.2	105
84	The Cardiac Fas (APO-1/CD95) Receptor/Fas Ligand System. Circulation, 2000, 101, 1172-1178.	1.6	104
85	Sendai Virus Infection Induces Apoptosis through Activation of Caspase-8 (FLICE) and Caspase-3 (CPP32). Journal of Virology, 1999, 73, 702-708.	3.4	102
86	Apoptosis Resistance of MCF-7 Breast Carcinoma Cells to Ionizing Radiation Is Independent of p53 and Cell Cycle Control but Caused by the Lack of Caspase-3 and a Caffeine-Inhibitable Event. Cancer Research, 2004, 64, 7065-7072.	0.9	101
87	Mesalazine inhibits activation of transcription factor NF-κB in inflamed mucosa of patients with ulcerative colitis. American Journal of Gastroenterology, 2000, 95, 3452-3457.	0.4	100
88	CD152 (CTLA-4) Determines the Unequal Resistance of Th1 and Th2 Cells against Activation-induced Cell Death by a Mechanism Requiring Pl3 Kinase Function. Journal of Experimental Medicine, 2004, 199, 831-842.	8.5	99
89	Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. Journal of Cell Science, 2001, 114, 4161-4172.	2.0	99
90	Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/ 5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene, 2005, 24, 1231-1243.	5.9	97

#	Article	IF	Citations
91	Myrtucommulone from Myrtus communis induces apoptosis in cancer cells via the mitochondrial pathway involving caspase-9. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 119-131.	4.9	96
92	The Multiple Battles Fought by Anti-Apoptotic p21. Cell Cycle, 2007, 6, 407-413.	2.6	95
93	$\hat{\mathbb{I}^{\mathfrak{D}}}$ is a key driver in the development of psoriasis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5825-33.	7.1	95
94	Keratins: Biomarkers and modulators of apoptotic and necrotic cell death in the liver. Hepatology, 2016, 64, 966-976.	7.3	95
95	The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells. FASEB Journal, 2002, 16, 1651-1653.	0.5	94
96	Staphylococcus aureusalpha-toxin induces apoptosis in peripheral blood mononuclear cells: role of endogenous tumour necrosis factor-alpha and the mitochondrial death pathway. Cellular Microbiology, 2003, 5, 729-741.	2.1	94
97	Critical role of nuclear factorâ€PB and stressâ€activated protein kinases in steroid unresponsiveness. FASEB Journal, 2002, 16, 1-19.	0.5	92
98	Caspase-8 Can Be Activated by Interchain Proteolysis without Receptor-triggered Dimerization during Drug-induced Apoptosis. Journal of Biological Chemistry, 2005, 280, 5267-5273.	3.4	92
99	Caspase activation is associated with spontaneous recovery from acute liver failure. Hepatology, 2008, 47, 1624-1633.	7. 3	92
100	Mechanisms of Cell Death in Acute Liver Failure. Frontiers in Physiology, 2012, 3, 79.	2.8	92
101	Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFÂ treatment. Gut, 2011, 60, 1345-1353.	12.1	91
102	Unique and overlapping substrate specificities of caspase-8 and caspase-10. Oncogene, 2006, 25, 152-159.	5.9	90
103	Apoptin, a tumor-selective killer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1335-1342.	4.1	90
104	TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice. Cell Death and Disease, 2020, 11, 212.	6.3	90
105	lκBζ is a key transcriptional regulator of IL-36–driven psoriasis-related gene expression in keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10088-10093.	7.1	89
106	Detection of elevated caspase activation and early apoptosis in liver diseases. European Journal of Cell Biology, 2001, 80, 230-239.	3.6	84
107	Pifithrin-α protects against DNA damage-induced apoptosis downstream of mitochondria independent of p53. Cell Death and Differentiation, 2009, 16, 869-878.	11.2	84
108	MicroRNAs play a role in spontaneous recovery from acute liver failure. Hepatology, 2014, 60, 1346-1355.	7.3	84

#	Article	IF	CITATIONS
109	The tyrosine kinase Lck is required for CD95-independent caspase-8 activation and apoptosis in response to ionizing radiation. Oncogene, 1999, 18, 4983-4992.	5.9	83
110	lîºBNS Protein Mediates Regulatory T Cell Development via Induction of the Foxp3 Transcription Factor. Immunity, 2012, 37, 998-1008.	14.3	82
111	Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene, 2003, 22, 8021-8030.	5.9	81
112	िष्Bζ Is a Transcriptional Key Regulator of CCL2/MCP-1. Journal of Immunology, 2013, 190, 4812-4820.	0.8	81
113	Differential Induction of Apoptosis and Senescence by the DNA Methyltransferase Inhibitors 5-Azacytidine and 5-Aza-2′-Deoxycytidine in Solid Tumor Cells. Molecular Cancer Therapeutics, 2013, 12, 2226-2236.	4.1	81
114	Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: Facts and artefacts. Toxicology in Vitro, 2012, 26, 323-334.	2.4	80
115	Thalidomide Induces Limb Anomalies by PTEN Stabilization, Akt Suppression, and Stimulation of Caspase-Dependent Cell Death. Molecular and Cellular Biology, 2008, 28, 529-538.	2.3	76
116	Staphylococcus aureus induces caspase-independent cell death in human peritoneal mesothelial cells. Kidney International, 2006, 70, 1089-1098.	5.2	75
117	Triggering of a novel intrinsic apoptosis pathway by the kinase inhibitor staurosporine: activation of caspase $\hat{a} \in 9$ in the absence of Apaf $\hat{a} \in A$. FASEB Journal, 2011, 25, 3250-3261.	0.5	75
118	High Glutathione and Glutathione Peroxidase-2 Levels Mediate Cell-Type-Specific DNA Damage Protection in Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 886-898.	4.8	74
119	The Adapter Protein Apoptotic Protease-activating Factor-1 (Apaf-1) Is Proteolytically Processed during Apoptosis. Journal of Biological Chemistry, 2001, 276, 29772-29781.	3.4	73
120	Effects of nebivolol on proliferation and apoptosis of human coronary artery smooth muscle and endothelial cells. Cardiovascular Research, 2001, 49, 430-439.	3.8	72
121	The Transforming Acidic Coiled Coil 3 Protein Is Essential for Spindle-dependent Chromosome Alignment and Mitotic Survival. Journal of Biological Chemistry, 2007, 282, 29273-29283.	3.4	72
122	Apaf-1 and caspase-9 deficiency prevents apoptosis in a Bax-controlled pathway and promotes clonogenic survival during paclitaxel treatment. Blood, 2007, 110, 3662-3672.	1.4	71
123	Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood, 2021, 138, 871-884.	1.4	71
124	A monoclonal antibody reacting with endothelial cells of budding vessels in tumors and inflammatory tissues, and non-reactive with normal adult tissues. International Journal of Cancer, 1986, 38, 481-488.	5.1	70
125	Role of the CD95/CD95 Ligand System in Glucocorticoid-Induced Monocyte Apoptosis. Journal of Immunology, 2001, 166, 1344-1351.	0.8	70
126	Ionizing radiation but not anticancer drugs causes cell cycle arrest and failure to activate the mitochondrial death pathway in MCF-7 breast carcinoma cells. Oncogene, 2001, 20, 5043-5053.	5.9	69

#	Article	IF	Citations
127	Arsenic trioxide triggers a regulated form of caspase-independent necrotic cell death via the mitochondrial death pathway. Oncogene, 2005, 24, 1904-1913.	5.9	69
128	Loss of Caspase-9 Reveals Its Essential Role for Caspase-2 Activation and Mitochondrial Membrane Depolarization. Molecular Biology of the Cell, 2007, 18, 84-93.	2.1	68
129	Unscheduled Akt-Triggered Activation of Cyclin-Dependent Kinase 2 as a Key Effector Mechanism of Apoptin's Anticancer Toxicity. Molecular and Cellular Biology, 2009, 29, 1235-1248.	2.3	68
130	Translational approaches targeting the p53 pathway for anti ancer therapy. British Journal of Pharmacology, 2012, 165, 328-344.	5.4	68
131	Sulforaphane Protects from T Cell–Mediated Autoimmune Disease by Inhibition of IL-23 and IL-12 in Dendritic Cells. Journal of Immunology, 2014, 192, 3530-3539.	0.8	68
132	Platelets induce apoptosis via membrane-bound FasL. Blood, 2015, 126, 1483-1493.	1.4	68
133	Improvement of nonâ€invasive markers of NAFLD from an individualised, webâ€based exercise program. Alimentary Pharmacology and Therapeutics, 2019, 50, 930-939.	3.7	67
134	The extent of liver steatosis in chronic hepatitis C virus infection is mirrored by caspase activity in serum. Hepatology, 2005, 42, 113-120.	7.3	66
135	Induction of p21CIP/WAF-1 and G2 arrest by ionizing irradiation impedes caspase-3-mediated apoptosis in human carcinoma cells. Oncogene, 2006, 25, 972-980.	5.9	66
136	Cell Surface Externalization of Annexin A1 as a Failsafe Mechanism Preventing Inflammatory Responses during Secondary Necrosis. Journal of Immunology, 2009, 183, 8138-8147.	0.8	66
137	Apoptin-induced cell death is modulated by Bcl-2 family members and is Apaf-1 dependent. Oncogene, 2006, 25, 2213-2222.	5.9	65
138	Loss of Caspase-9 Provides Genetic Evidence for the Type I/II Concept of CD95-mediated Apoptosis. Journal of Biological Chemistry, 2006, 281, 29652-29659.	3.4	65
139	Toxoplasma gondii inhibits Fas/CD95-triggered cell death by inducing aberrant processing and degradation of caspase 8. Cellular Microbiology, 2007, 9, 1556-1570.	2.1	65
140	miR-1224 inhibits cell proliferation in acute liver failure by targeting the antiapoptotic gene Nfib. Journal of Hepatology, 2017, 67, 966-978.	3.7	64
141	Potential and caveats of TRAIL in cancer therapy. Drug Resistance Updates, 2001, 4, 243-252.	14.4	63
142	The Marine Product Cephalostatin 1 Activates an Endoplasmic Reticulum Stress-specific and Apoptosome-independent Apoptotic Signaling Pathway. Journal of Biological Chemistry, 2006, 281, 33078-33086.	3.4	63
143	New insights into the molecular pathology of radiation-induced pneumopathy. Radiotherapy and Oncology, 2011, 101, 86-92.	0.6	62
144	IL-10 induces apoptosis in human monocytes involving the CD95 receptor/ligand pathway. European Journal of Immunology, 2000, 30, 1769-1777.	2.9	61

#	Article	IF	CITATIONS
145	Differential Gene Expression in Synovium of Rheumatoid Arthritis and Osteoarthritis. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 3, 165-172.	1.6	60
146	Down-regulation of $\langle i \rangle$ miR-192-5p $\langle i \rangle$ protects from oxidative stress-induced acute liver injury. Clinical Science, 2016, 130, 1197-1207.	4.3	59
147	Caspaseâ€cleaved keratinâ€18 fragments increase during alcohol withdrawal and predict liverâ€related death in patients with alcoholic liver disease. Hepatology, 2017, 66, 96-107.	7. 3	59
148	The BH3-only member Noxa causes apoptosis in melanoma cells by multiple pathways. Oncogene, 2008, 27, 4557-4568.	5.9	56
149	Mutational analyses of c-FLIPR, the only murine short FLIP isoform, reveal requirements for DISC recruitment. Cell Death and Differentiation, 2008, 15, 773-782.	11.2	55
150	Differential regulation of the proapoptotic multidomain protein Bak by p53 and p73 at the promoter level. Cell Death and Differentiation, 2011, 18, 1130-1139.	11.2	55
151	α-Fucosidase as a novel convenient biomarker for cellular senescence. Cell Cycle, 2013, 12, 1922-1927.	2.6	55
152	Cellular senescence or EGFR signaling induces Interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR). Cell Cycle, 2013, 12, 3421-3432.	2.6	55
153	Substance P and Histamine Induce Interleukinâ€6 Expression in Human Astrocytoma Cells by a Mechanism Involving Protein Kinase C and Nuclear Factorâ€lLâ€6. Journal of Neurochemistry, 1998, 70, 1577-1583.	3.9	54
154	Cancer stem cells as targets for cancer therapy: selected cancers as examples. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 165-180.	2.3	54
155	Multiple Kinetics of Mitochondrial Cytochrome <i>c</i> Release in Drug-Induced Apoptosis. Molecular Pharmacology, 2001, 60, 1008-1019.	2.3	53
156	Caspase-8 and Apaf-1-independent Caspase-9 Activation in Sendai Virus-infected Cells. Journal of Biological Chemistry, 2002, 277, 29817-29824.	3.4	53
157	The Fas/APO-1 receptor and its deadly ligand. Trends in Cell Biology, 1994, 4, 421-426.	7.9	50
158	MiRNA expression patterns predict survival in glioblastoma. Radiation Oncology, 2011, 6, 153.	2.7	50
159	Autophagy-enhancing drug carbamazepine diminishes hepatocellular death in fibrinogen storage disease. Journal of Hepatology, 2013, 59, 626-630.	3.7	50
160	Senescenceâ€associated release of transmembrane proteins involves proteolytic processing by ADAM17 and microvesicle shedding. FASEB Journal, 2014, 28, 4847-4856.	0.5	50
161	Anticancer Drugs Induce Caspase-8/FLICE Activation and Apoptosis in the Absence of CD95 Receptor/Ligand Interaction. Blood, 1999, 93, 3053-3063.	1.4	50
162	Up-regulation of c-FLIPshort by NFAT contributes to apoptosis resistance of short-term activated T cells. Blood, 2008, 112, 690-698.	1.4	49

#	Article	IF	CITATIONS
163	Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death. Cell Death and Differentiation, 2010, 17, 642-654.	11.2	49
164	Irradiation-induced Translocation of p53 to Mitochondria in the Absence of Apoptosis. Journal of Biological Chemistry, 2005, 280, 37169-37177.	3.4	47
165	Loss of Acinus Inhibits Oligonucleosomal DNA Fragmentation but Not Chromatin Condensation during Apoptosis. Journal of Biological Chemistry, 2006, 281, 12475-12484.	3.4	47
166	The centrosomal protein TACC3 controls paclitaxel sensitivity by modulating a premature senescence program. Oncogene, 2010, 29, 6184-6192.	5.9	47
167	Enhanced killing of therapyâ€induced senescent tumor cells by oncolytic measles vaccine viruses. International Journal of Cancer, 2014, 134, 235-243.	5.1	47
168	The role of ceramide in receptor- and stress-induced apoptosis studied in acidic ceramidase-deficient Farber disease cells. Oncogene, 2001, 20, 6493-6502.	5.9	46
169	Bax/Bak-independent mitochondrial depolarization and reactive oxygen species induction by sorafenib overcome resistance to apoptosis in renal cell carcinoma. Journal of Biological Chemistry, 2017, 292, 6478-6492.	3.4	46
170	Death Receptor-Induced Signaling Pathways Are Differentially Regulated by Gamma Interferon Upstream of Caspase 8 Processing. Molecular and Cellular Biology, 2005, 25, 6363-6379.	2.3	45
171	Release of lysophospholipid â€~find-me' signals during apoptosis requires the ATP-binding cassette transporter A1. Autoimmunity, 2012, 45, 568-573.	2.6	45
172	Functional Characterization of DNase X, a Novel Endonuclease Expressed in Muscle Cellsâ€. Biochemistry, 2000, 39, 7365-7373.	2.5	44
173	Inhibition of the ER Ca2+ pump forces multidrug-resistant cells deficient in Bak and Bax into necrosis. Journal of Cell Science, 2009, 122, 4481-4491.	2.0	44
174	Increased apoptosis induction in hepatocellular carcinoma by a novel tumor-targeted TRAIL fusion protein combined with bortezomib. Hepatology, 2013, 57, 625-636.	7.3	44
175	Caspase activation is involved in chronic periodontitis. FEBS Letters, 2005, 579, 5559-5564.	2.8	43
176	The tyrosine kinase Lck is a positive regulator of the mitochondrial apoptosis pathway by controlling Bak expression. Oncogene, 2006, 25, 186-197.	5.9	42
177	Functional characterization of p53 \hat{l}^2 and p53 \hat{l}^3 , two isoforms of the tumor suppressor p53. Cell Cycle, 2009, 8, 1238-1248.	2.6	42
178	MicroRNA-125b-5p mimic inhibits acute liver failure. Nature Communications, 2016, 7, 11916.	12.8	42
179	Bok is a genuine multi-BH-domain protein that triggers apoptosis in the absence of Bax and Bak and augments drug response. Journal of Cell Science, 2016, 129, 2213-23.	2.0	42
180	Synergistic induction of interleukin-6 by tumor necrosis factor and lithium chloride in mice: Possible role in the triggering and exacerbation of psoriasis by lithium treatment. European Journal of Immunology, 1992, 22, 2181-2184.	2.9	41

#	Article	IF	Citations
181	EVI-1 modulates leukemogenic potential and apoptosis sensitivity in human acute lymphoblastic leukemia. Leukemia, 2013, 27, 56-65.	7.2	41
182	Treatment of non-alcoholic steatohepatitis patients with vitamin D: a double-blinded, randomized, placebo-controlled pilot study. Scandinavian Journal of Gastroenterology, 2018, 53, 1114-1120.	1.5	41
183	Interaction with PI3-kinase contributes to the cytotoxic activity of Apoptin. Oncogene, 2008, 27, 3060-3065.	5.9	40
184	Human SAP18 mediates assembly of a splicing regulatory multiprotein complex via its ubiquitin-like fold. Rna, 2010, 16, 2442-2454.	3.5	40
185	lκBζ is a regulator for the senescence-associated secretory phenotype in DNA damage- and oncogene-induced senescence. Journal of Cell Science, 2013, 126, 3738-45.	2.0	40
186	LORD-Q: a long-run real-time PCR-based DNA-damage quantification method for nuclear and mitochondrial genome analysis. Nucleic Acids Research, 2014, 42, e41-e41.	14.5	40
187	Controlled processing of a full-sized porcine liver to a decellularized matrix inÂ24Âh. Journal of Bioscience and Bioengineering, 2015, 119, 609-613.	2.2	40
188	Differential regulation of CD95 (Fas/APO-1) expression in human blood eosinophils. European Journal of Immunology, 1998, 28, 2057-2065.	2.9	39
189	Adenine deoxynucleotides fludarabine and cladribine induce apoptosis in a CD95/Fas receptor, FADD and caspase-8-independent manner by activation of the mitochondrial cell death pathway. Oncogene, 2004, 23, 9408-9418.	5.9	39
190	In Severe Alcoholic Hepatitis, Serum Keratin-18 Fragments Are Diagnostic, Prognostic, and Theragnostic Biomarkers. American Journal of Gastroenterology, 2020, 115, 1857-1868.	0.4	39
191	A comparative study on the effects of tumor necrosis factor-? (TNF-?), human angiogenic factor (h-AF) and basic fibroblast growth factor (bFGF) on the chorioallantoic membrane of the chick embryo. The Anatomical Record, 1992, 234, 105-115.	1.8	38
192	Caspase-10 Sensitizes Breast Carcinoma Cells to TRAIL-Induced but Not Tumor Necrosis Factor-Induced Apoptosis in a Caspase- 3-Dependent Manner. Molecular and Cellular Biology, 2005, 25, 2808-2818.	2.3	38
193	The DNA methyltransferase inhibitors zebularine and decitabine induce mitochondriaâ€mediated apoptosis and DNA damage in p53 mutant leukemic T cells. International Journal of Cancer, 2012, 130, 1195-1207.	5.1	38
194	Caspase activation is required for antiviral treatment response in chronic hepatitis C virus infection. Hepatology, 2006, 43, 1311-1316.	7.3	37
195	The Proteasome Is Required for Rapid Initiation of Death Receptor-Induced Apoptosis. Molecular and Cellular Biology, 2006, 26, 1967-1978.	2.3	37
196	Cell death in sepsis: a matter of how, when, and where. Critical Care, 2009, 13, 173.	5.8	37
197	NF-κB Activation in Lymphoid Malignancies: Genetics, Signaling, and Targeted Therapy. Biomedicines, 2018, 6, 38.	3.2	37
198	Molecular and functional interactions between AKT and SOX2 in breast carcinoma. Oncotarget, 2015, 6, 43540-43556.	1.8	37

#	Article	IF	CITATIONS
199	The Atypical Inhibitor of NF-κB, IκBζ, Controls Macrophage Interleukin-10 Expression. Journal of Biological Chemistry, 2016, 291, 12851-12861.	3.4	36
200	Prominent Oncogenic Roles of EVI1 in Breast Carcinoma. Cancer Research, 2017, 77, 2148-2160.	0.9	36
201	Raptinal bypasses BAX, BAK, and BOK for mitochondrial outer membrane permeabilization and intrinsic apoptosis. Cell Death and Disease, 2019, 10, 556.	6.3	36
202	Identification of syntenin and other TNF-inducible genes in human umbilical arterial endothelial cells by suppression subtractive hybridization. FEBS Letters, 2000, 467, 299-304.	2.8	35
203	TACC3 depletion sensitizes to paclitaxel-induced cell death and overrides p21WAF-mediated cell cycle arrest. Oncogene, 2008, 27, 116-125.	5.9	35
204	lκBζ expression is regulated by miR-124a. Cell Cycle, 2009, 8, 2019-2023.	2.6	35
205	A single nucleotide polymorphism determines protein isoform production of the human c-FLIP protein. Blood, 2009, 114, 572-579.	1.4	35
206	MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation. Journal of Investigative Dermatology, 2016, 136, 788-797.	0.7	35
207	miR-223 represents a biomarker in acute and chronic liver injury. Clinical Science, 2017, 131, 1971-1987.	4.3	35
208	S-Adenosylhomocysteine as a physiological modulator of Apo-1-mediated apoptosis. International Immunology, 1996, 8, 1139-1147.	4.0	34
209	Serum-Derived Plasminogen Is Activated by Apoptotic Cells and Promotes Their Phagocytic Clearance. Journal of Immunology, 2012, 189, 5722-5728.	0.8	34
210	Acute cytotoxicity of MIRA-1/NSC19630, a mutant p53-reactivating small molecule, against human normal and cancer cells via a caspase-9-dependent apoptosis. Cancer Letters, 2015, 359, 211-217.	7.2	34
211	Thioredoxin in human and experimental sepsis*. Critical Care Medicine, 2009, 37, 2155-2159.	0.9	33
212	Arsenic trioxide induces regulated, death receptor-independent cell death through a Bcl-2-controlled pathway. Oncogene, 2005, 24, 7031-7042.	5.9	32
213	Apoptin is modified by SUMO conjugation and targeted to promyelocytic leukemia protein nuclear bodies. Oncogene, 2007, 26, 1557-1566.	5.9	32
214	The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells. Oncotarget, 2016, 7, 21875-21886.	1.8	32
215	[26] Effects of thioredoxin on activation of transcription factor NF-κB. Methods in Enzymology, 1995, 252, 253-264.	1.0	31
216	The non-steroidal anti-inflammatory drug tepoxalin inhibits interleukin-6 and alphal-anti-chymotrypsin synthesis in astrocytes by preventing degradation of llB-alpha. Neuropharmacology, 1999, 38, 1325-1333.	4.1	30

#	Article	IF	CITATIONS
217	Tumor necrosis factor α sensitizes malignant cells to chemotherapeutic drugs via the mitochondrial apoptosis pathway independently of caspase-8 and NF-κB. Oncogene, 2004, 23, 6743-6759.	5.9	30
218	CARD14-Mediated Activation of Paracaspase MALT1 in Keratinocytes: Implications for Psoriasis. Journal of Investigative Dermatology, 2017, 137, 569-575.	0.7	30
219	Biopsy-Controlled Liver Fibrosis Staging Using the Enhanced Liver Fibrosis (ELF) Score Compared to Transient Elastography. PLoS ONE, 2012, 7, e51906.	2.5	29
220	c-FLIP Expression in Foxp3-Expressing Cells Is Essential for Survival of Regulatory T Cells and Prevention of Autoimmunity. Cell Reports, 2017, 18, 12-22.	6.4	29
221	Could inherited predisposition drive non-obese fatty liver disease? Results from German tertiary referral centers. Journal of Human Genetics, 2018, 63, 621-626.	2.3	29
222	The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. Journal of Clinical Investigation, 2020, 130, 5765-5781.	8.2	29
223	Lithium chloride potentiates tumor necrosis factor-induced and interleukin 1-induced cytokine and cytokine receptor expression. Cytokine, 1991, 3, 284-291.	3.2	28
224	Inhibition of JNK signaling diminishes early but not late cellular stress-induced apoptosis. International Journal of Cancer, 2003, 107, 520-527.	5.1	28
225	Activation of the mitochondrial death pathway is commonly mediated by a preferential engagement of Bak. Oncogene, 2008, 27, 1387-1396.	5.9	28
226	Serum biomarkers of cell death for monitoring therapy response of gastrointestinal carcinomas. European Journal of Cancer, 2010, 46, 1464-1473.	2.8	28
227	Cutting-Edge Apoptosis-Based Therapeutics. BioDrugs, 2007, 21, 273-297.	4.6	26
228	Inhibition of the NF-κB survival pathway via caspase-dependent cleavage of the IKK complex scaffold protein and NF-κB essential modulator NEMO. Cell Death and Differentiation, 2008, 15, 152-160.	11.2	26
229	Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection. Alimentary Pharmacology and Therapeutics, 2018, 48, 270-280.	3.7	26
230	Methyltransferase inhibition induces p53-dependent apoptosis and a novel form of cell death. Oncogene, 2005, 24, 7002-7011.	5.9	25
231	The centrosome and mitotic spindle apparatus in cancer and senescence. Cell Cycle, 2010, 9, 4469-4473.	2.6	24
232	Keratinocyte-derived lκBζ drives psoriasis and associated systemic inflammation. JCI Insight, 2019, 4, .	5.0	24
233	Adaptation of topoisomerase I paralogs to nuclear and mitochondrial DNA. Nucleic Acids Research, 2009, 37, 6414-6428.	14.5	23
234	Interrogating Substrate Selectivity and Composition of Endogenous Histone Deacetylase Complexes with Chemical Probes. Angewandte Chemie - International Edition, 2016, 55, 1192-1195.	13.8	23

#	Article	IF	CITATIONS
235	In situ monitoring of caspase activation in hepatobiliary diseases. Cell Death and Differentiation, 2000, 7, 504-505.	11.2	22
236	Homocysteine inhibits tumor necrosis factor-induced activation of endothelium via modulation of nuclear factor-l Bi activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1540, 154-165.	4.1	22
237	Specific inhibition of transcription factor NF-κB through intracellular protein delivery of lκBα by the Herpes virus protein VP22. Oncogene, 2003, 22, 5367-5373.	5.9	22
238	Increased apoptosis of regulatory T cells in patients with active autoimmune hepatitis. Cell Death and Disease, 2017, 8, 3219.	6.3	22
239	German Cancer Consortium (DKTK) $\hat{a}\in$ A national consortium for translational cancer research. Molecular Oncology, 2019, 13, 535-542.	4.6	22
240	Ribavirin and Alpha Interferon Enhance Death Receptor-Mediated Apoptosis and Caspase Activation in Human Hepatoma Cells. Antimicrobial Agents and Chemotherapy, 2003, 47, 1912-1921.	3.2	21
241	Caspase-10 in Mouse or Not?. Science, 2006, 312, 1874a-1874a.	12.6	21
242	The BCL-2 selective inhibitor ABT-199 sensitizes soft tissue sarcomas to proteasome inhibition by a concerted mechanism requiring BAX and NOXA. Cell Death and Disease, 2020, 11, 701.	6.3	21
243	Up-regulation of c-FLIPS+R upon CD40 stimulation is associated with inhibition of CD95-induced apoptosis in primary precursor B-ALL. Blood, 2007, 110, 384-387.	1.4	20
244	Role of Smac in cephalostatin-induced cell death. Cell Death and Differentiation, 2008, 15, 1930-1940.	11.2	20
245	Ethanol sensitizes hepatocytes for TGF-β-triggered apoptosis. Cell Death and Disease, 2018, 9, 51.	6.3	20
246	Validating Comprehensive Next-Generation Sequencing Results for Precision Oncology: The NCT/DKTK Molecularly Aided Stratification for Tumor Eradication Research Experience. JCO Precision Oncology, 2018, 2, 1-13.	3.0	20
247	Targeting chronic NFAT activation with calcineurin inhibitors in diffuse large B-cell lymphoma. Blood, 2020, 135, 121-132.	1.4	20
248	Redox Events in HTLV-1 Tax-Induced Apoptotic T-Cell Death. Antioxidants and Redox Signaling, 2002, 4, 471-477.	5.4	19
249	Multicenter Validation Study of a Diagnostic Algorithm to Detect NASH and Fibrosis in NAFLD Patients With Low NAFLD Fibrosis Score or Liver Stiffness. Clinical and Translational Gastroenterology, 2019, 10, e00066.	2.5	19
250	The TNFR1 Antagonist Atrosimab Is Therapeutic in Mouse Models of Acute and Chronic Inflammation. Frontiers in Immunology, 2021, 12, 705485.	4.8	19
251	Nuclear delivery of recombinant OCT4 by chitosan nanoparticles for transgene-free generation of protein-induced pluripotent stem cells. Oncotarget, 2016, 7, 37728-37739.	1.8	19
252	Transcription factor AP-2α triggers apoptosis in cardiac myocytes. Cell Death and Differentiation, 2004, 11, 485-493.	11.2	18

#	Article	IF	Citations
253	Novel AKT phosphorylation sites identified in the pluripotency factors OCT4, SOX2 and KLF4. Cell Cycle, 2015, 14, 3748-3754.	2.6	17
254	Identification of BCL-XL as highly active survival factor and promising therapeutic target in colorectal cancer. Cell Death and Disease, 2020, 11, 875.	6.3	17
255	Tributyltin (TBT) induces ultra-rapid caspase activation independent of apoptosome formation in human platelets. Oncogene, 2003, 22, 775-780.	5.9	16
256	Fluorescent labeling of CRISPR/Cas9 RNP for gene knockout in HSPCs and iPSCs reveals an essential role for GADD45b in stress response. Blood Advances, 2019, 3, 63-71.	5.2	16
257	Human iPSC-based model of severe congenital neutropenia reveals elevated UPR and DNA damage in CD34+ cells preceding leukemic transformation. Experimental Hematology, 2019, 71, 51-60.	0.4	16
258	Reactive Oxygen Intermediates as Primary Signals and Second Messengers in the Activation of Transcription Factors., 1997,, 239-259.		15
259	Mitochondria are not required for death receptor-mediated cytosolic acidification during apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 623-630.	4.9	15
260	Increased plasma levels of CK-18 as potential cell death biomarker in patients with HELLP syndrome. Cell Death and Disease, 2013, 4, e886-e886.	6.3	15
261	Cytochrome c is rapidly extruded from apoptotic cells and detectable in serum of anticancer-drug treated tumor patients. Advances in Experimental Medicine and Biology, 2001, 495, 331-334.	1.6	15
262	Molecular mechanisms of glucocorticoid resistance. Gastroenterology, 2000, 119, 1178-1179.	1.3	14
263	Stimulation of serum- and glucocorticoid-regulated kinase-1 gene expression by endothelin-1. Biochemical Pharmacology, 2006, 71, 1175-1183.	4.4	14
264	Necrosis versus apoptosis in acetaminophen-induced hepatotoxicity. Hepatology, 2011, 53, 1070-1070.	7.3	14
265	A novel intronic promoter of the <i>Crem</i> gene induces small ICER (smICER) isoforms. FASEB Journal, 2014, 28, 143-152.	0.5	14
266	Protein Kinase C Delta (PKCÎ) Affects Proliferation of Insulin-Secreting Cells by Promoting Nuclear Extrusion of the Cell Cycle Inhibitor p21Cip1/WAF1. PLoS ONE, 2011, 6, e28828.	2.5	13
267	Assessment of UV-C-induced water disinfection by differential PCR-based quantification of bacterial DNA damage. Journal of Microbiological Methods, 2018, 149, 89-95.	1.6	13
268	Autophagy alleviates amiodarone-induced hepatotoxicity. Archives of Toxicology, 2020, 94, 3527-3539.	4.2	13
269	Impaired Autophagy in Psoriasis and Atopic Dermatitis: A New Therapeutic Target?. Journal of Investigative Dermatology, 2021, 141, 2775-2777.	0.7	13
270	Prevention of human smooth muscle cell proliferation without induction of apoptosis by the topoisomerase I inhibitor topotecan. Biochemical Pharmacology, 2001, 61, 119-127.	4.4	12

#	Article	IF	CITATIONS
271	Does Caspase Inhibition Promote Clonogenic Tumor Growth?. Cell Cycle, 2007, 6, 3048-3053.	2.6	12
272	Interferon-Mediated Cytokine Induction Determines Sustained Virus Control in Chronic Hepatitis C Virus Infection. Journal of Infectious Diseases, 2016, 213, 746-754.	4.0	12
273	Contribution of BH3-domain and Transmembrane-domain to the Activity and Interaction of the Pore-forming Bcl-2 Proteins Bok, Bak, and Bax. Scientific Reports, 2018, 8, 12434.	3.3	12
274	Simultaneous quantification of DNA damage and mitochondrial copy number by long-run DNA-damage quantification (LORD-Q). Oncotarget, 2017, 8, 112417-112425.	1.8	12
275	The Paracaspase MALT1 in Cancer. Biomedicines, 2022, 10, 344.	3.2	12
276	The Caenorhabditis elegans death protein Ced-4 contains a motif with similarity to the mammalian â€~death effector domain'. FEBS Letters, 1997, 402, 256-258.	2.8	11
277	Abnormal activation of transcription factor NF-?B involved in steroid resistance in chronic inflammatory bowel disease. American Journal of Gastroenterology, 2000, 95, 1845-1846.	0.4	11
278	Ordering of ceramide formation and caspase-9 activation in CD95L-induced Jurkat leukemia T cell apoptosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 684-693.	2.4	11
279	Robust Detection of Liver Steatosis and Staging of NAFLD by an Improved ELISA for Serum Cytokeratin-18 Fragments. American Journal of Gastroenterology, 2014, 109, 140-141.	0.4	11
280	Decrease of Store-Operated Ca2+ Entry and Increase of Na+/Ca2+ Exchange by Pharmacological JAK2 Inhibition. Cellular Physiology and Biochemistry, 2016, 38, 683-695.	1.6	11
281	Potentials and pitfalls of DNA array analysis of the endothelial stress response. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 73-84.	4.1	10
282	The paracaspase <scp>MALT</scp> 1 dampens <scp>NF</scp> â€PB signalling by cleaving the <scp>LUBAC</scp> subunit <scp>HOIL</scp> â€1. FEBS Journal, 2016, 283, 400-402.	4.7	10
283	Hepatic Amiodarone Lipotoxicity Is Ameliorated by Genetic and Pharmacological Inhibition of Endoplasmatic Reticulum Stress. Toxicological Sciences, 2017, 159, 402-412.	3.1	10
284	Distinct immune evasion in <scp>APOBEC</scp> â€enriched, <scp>HPV</scp> â€negative <scp>HNSCC</scp> . International Journal of Cancer, 2020, 147, 2293-2302.	5.1	10
285	BH3-only protein expression determines hepatocellular carcinoma response to sorafenib-based treatment. Cell Death and Disease, 2021, 12, 736.	6. 3	10
286	Targeting extracellular and juxtamembrane FGFR2 mutations in chemotherapy-refractory cholangiocarcinoma. Npj Precision Oncology, 2021, 5, 80.	5 . 4	10
287	Baseline caspase activity predicts progression free survival of temsirolimus-treated head neck cancer patients. European Journal of Cancer, 2015, 51, 1596-1602.	2.8	9
288	Loss of KRAS control as consequence of downregulated microRNA-622 in hepatocellular carcinoma and its potential therapeutic implication. Gut, 2018, 67, 1206-1207.	12.1	9

#	Article	IF	Citations
289	The paracaspase MALT1 in psoriasis. Biological Chemistry, 2021, 402, 1583-1589.	2.5	9
290	Demonstration of PDC-E1 subunits as major antigens in the complement-fixing fraction M4 and re-evaluation of PDC-E1-specific antibodies in PBC patients. Liver International, 2006, 26, 846-855.	3.9	8
291	Complete Downmodulation of P-Selectin Glycoprotein Ligand in Monocytes Undergoing Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1375-1378.	2.4	8
292	Genome surveillance in pluripotent stem cells: Low apoptosis threshold and efficient antioxidant defense. Molecular and Cellular Oncology, 2016, 3, e1052183.	0.7	8
293	Temporal Dynamics of Reactive Oxygen and Nitrogen Species and NF-κB Activation During Acute and Chronic T Cell–Driven Inflammation. Molecular Imaging and Biology, 2020, 22, 504-514.	2.6	8
294	CD95 ligand mediates T-cell receptor-induced apoptosis of a CD4+ CD8+ double positive thymic lymphoma. Oncogene, 2006, 25, 7587-7596.	5.9	7
295	Friend or Foe? The Proteasome in Combined Cancer Therapy. Cell Cycle, 2006, 5, 841-845.	2.6	7
296	Serum cell death biomarker mirrors liver cancer regression after transarterial chemoembolisation. Alimentary Pharmacology and Therapeutics, 2016, 44, 747-754.	3.7	7
297	Macrophage p38 kinase inhibition for liver regeneration. FEBS Journal, 2017, 284, 4196-4199.	4.7	7
298	Human invariant natural killer T cells promote tolerance by preferential apoptosis induction of conventional dendritic cells. Haematologica, 2022, 107, 427-436.	3.5	7
299	Induced proximity model attracts NF-κB researchers. Cell Death and Differentiation, 2000, 7, 1025-1026.	11.2	6
300	î"Np73ß is oncogenic in hepatocellular carcinoma by blocking apoptosis signaling via death receptors and mitochondria. Cell Cycle, 2010, 9, 2758-2766.	2.6	6
301	TNF Antagonists in IBD. Inflammatory Bowel Diseases, 2013, 19, E51-E52.	1.9	6
302	Gut Commensal-Induced ll°Bζ Expression in Dendritic Cells Influences the Th17 Response. Frontiers in Immunology, 2020, 11, 612336.	4.8	6
303	An apoptosis biomarker for prediction of nonalcoholic steatohepatitis. Hepatology, 2009, 50, 991-991.	7. 3	5
304	lkBÎ \P is a Key Regulator of Tumour Necrosis Factor-a and Interleukin-17A-mediated Induction of Interleukin-36g in Human Keratinocytes. Acta Dermato-Venereologica, 2021, 101, adv00386.	1.3	5
305	DeltaNp73beta is oncogenic in hepatocellular carcinoma by blocking apoptosis signaling via death receptors and mitochondria. Cell Cycle, 2010, 9, 2710-1.	2.6	5
306	Oxygen radicals as second messengers. Trends in Cell Biology, 1991, 1, 150.	7.9	4

#	Article	IF	Citations
307	p53 Downregulation in myelodysplastic syndrome $\hat{a}\in$ a quantitative analysis by competitive RT-PCR. Leukemia, 2001, 15, 1663-1664.	7.2	4
308	Transforming growth factorâ€Ŷ1 enhances the antifibrinolytic and prothrombotic state of growing endothelial cells in a cell cycleâ€specific manner. FASEB Journal, 2006, 20, 965-966.	0.5	4
309	Can cell death biomarkers predict the outcome of acute liver failure?. Liver International, 2012, 32, 346-346.	3.9	4
310	Threonine Phosphorylation of lîºBî¶ Mediates Inhibition of Selective Proinflammatory TargetÂGenes. Journal of Investigative Dermatology, 2020, 140, 1805-1814.e6.	0.7	4
311	Electroelution of antigens immobilized on antibody-linked affinity matrices. Analytical Biochemistry, 1989, 177, 314-317.	2.4	3
312	Fluorogenic Substrates as Detectors of Caspase Activity During Natural Killer Cell-Induced Apoptosis. , 2000, 121, 155-162.		3
313	Modulation of the \hat{I}^2 -adrenergic receptor system of vascular smooth muscle cells in vitro and in vivo by chronically elevated endothelin-1 levels. Biochemical Pharmacology, 2002, 63, 1361-1369.	4.4	3
314	A rapid nonradioactive peptide phosphorylation assay. Journal of Experimental Therapeutics and Oncology, 2003, 3, 59-61.	0.5	3
315	Correspondence: T cells are compromised in tetracycline transactivator transgenic mice. Cell Death and Differentiation, 2018, 25, 634-636.	11.2	3
316	Transjugular diagnostics in acute liver failure including measurements of hepatocentral venous biomarker gradients. Hepatology Research, 2018, 48, 914-925.	3.4	3
317	CKâ€18 cell death markers improve the prediction of histological remission in autoimmune hepatitis during biochemical remission. Liver International, 2021, 41, 123-127.	3.9	3
318	Regulation of Gene Expression by Oxidative Stress. Advances in Molecular and Cell Biology, 1998, 25, 15-44.	0.1	2
319	Infliximab exerts anti-inflammatory capacity in IBD by induction of apoptosis in monocytes. Gastroenterology, 2000, 118, A664.	1.3	2
320	Extracellular ATP activates transcription factor NFAT in mouse microglial cells. Drug Development Research, 2001, 52, 213-219.	2.9	1
321	Pharmacological Modulation of Caspase Activation. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2005, 4, 407-419.	0.4	1
322	Increased Serum Levels of Activated Caspases in Murine and Human Biliary Atresia. Journal of Clinical Medicine, 2021, 10, 2718.	2.4	1
323	Catching chromatin relaxation in act by flow cytometry. Cell Cycle, 2009, 8, 2138-2142.	2.6	0
324	Biomarker in der Hepatologie und ihre therapeutische Relevanz. Arzneimittelforschung, 2010, 60, 693-694.	0.4	0

#	Article	IF	Citations
325	Reply:. Hepatology, 2012, 55, 654-655.	7.3	О
326	Reply. Hepatology, 2015, 61, 1440-1441.	7.3	0
327	Letter: cytokeratinâ€18 as a biomarker of hepatocellular carcinoma regression after transarterial chemoembolization. Authors' reply. Alimentary Pharmacology and Therapeutics, 2017, 45, 184-185.	3.7	0
328	Arsenic Trioxide Induces Regulated, Death Receptor- and Caspase-Independent Cell Death through the Mitochondrial Death Pathway Blood, 2005, 106, 4421-4421.	1.4	0
329	Upregulation of FLIPs upon CD40 Stimulation - A Novel Inhibititory Mechanism of CD95-Induced Apoptosis in Precursor B-ALL Blasts in Children Blood, 2005, 106, 855-855.	1.4	0
330	Tumor Growth and Cell Proliferation. Medical Radiology, 2009, , 19-37.	0.1	0
331	EVI-1 Mediates Apoptosis Resistance Via CD261 Induction and Enhances Leukemogenic Potential in Human Acute Lymphoblastic Leukemia. Blood, 2011, 118, 1356-1356.	1.4	0
332	Impaired DNA Damage Repair in Severe Congenital Neutropenia Patients. Blood, 2016, 128, 1334-1334.	1.4	0
333	Abstract LB-287: Identification of patients at risk for tumor predisposition syndromes based on the evaluation of sporadic cancer exome sequencing data: experiences from the NCT/DKTK MASTER program., 2017,,.		0
334	Abstract 468: Clinical relevance of comprehensive genomic analysis in advanced-stage cancers and rare malignancies: Results from the MASTER trial of the German Cancer Consortium. , 2019, , .		0
335	Abstract 821: Comprehensive genomic analysis of rare cancers: Results of the MASTER precision oncology trial of the German Cancer Consortium. , 2020, , .		O
336	Abstract 3710: Synergistic cell death induction in ovarian cancer by cisplatin and ABT-199 is mediated by expression of NOXA. Cancer Research, 2022, 82, 3710-3710.	0.9	0