Felix Viana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7870129/publications.pdf

Version: 2024-02-01

57758 69250 6,266 85 44 77 citations h-index g-index papers 86 86 86 5378 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Origins of direction selectivity in the primate retina. Nature Communications, 2022, 13, .	12.8	19
2	Expression of the cold thermoreceptor TRPM8 in rodent brain thermoregulatory circuits. Journal of Comparative Neurology, 2021, 529, 234-256.	1.6	39
3	Constitutive Phosphorylation as a Key Regulator of TRPM8 Channel Function. Journal of Neuroscience, 2021, 41, 8475-8493.	3.6	11
4	Piezo2 Mediates Low-Threshold Mechanically Evoked Pain in the Cornea. Journal of Neuroscience, 2020, 40, 8976-8993.	3.6	49
5	Detecting Warm Temperatures Is a Cool Kind of Thing. Neuron, 2020, 106, 712-714.	8.1	O
6	The Immunosuppressant Macrolide Tacrolimus Activates Cold-Sensing TRPM8 Channels. Journal of Neuroscience, 2019, 39, 949-969.	3.6	33
7	Morphological and functional changes in TRPM8â€expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice. Journal of Comparative Neurology, 2018, 526, 1859-1874.	1.6	47
8	Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis. Pflugers Archiv European Journal of Physiology, 2018, 470, 761-777.	2.8	26
9	Deletion of the Cold Thermoreceptor TRPM8 Increases Heat Loss and Food Intake Leading to Reduced Body Temperature and Obesity in Mice. Journal of Neuroscience, 2018, 38, 3643-3656.	3.6	65
10	Cover Image, Volume 526, Issue 11. Journal of Comparative Neurology, 2018, 526, C1-C1.	1.6	0
11	Nociceptors: thermal allodynia and thermal pain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 156, 103-119.	1.8	18
12	TRPA1 channels: Molecular sentinels of cellular stress and tissue damage. Toxicon, 2018, 149, 91.	1.6	0
13	TRPA1 Channels Mediate Human Gingival Fibroblast Response to Phenytoin. Journal of Dental Research, 2017, 96, 832-839.	5.2	14
14	TRPA1 channels: molecular sentinels of cellular stress and tissue damage. Journal of Physiology, 2016, 594, 4151-4169.	2.9	149
15	New Insight in Cold Pain: Role of Ion Channels, Modulation, and Clinical Perspectives. Journal of Neuroscience, 2016, 36, 11435-11439.	3.6	52
16	TRPM8 is a neuronal osmosensor that regulates eye blinking in mice. Nature Communications, 2015, 6, 7150.	12.8	111
17	TRPM8. Handbook of Experimental Pharmacology, 2014, 222, 547-579.	1.8	67
18	Ion Channel Profile of TRPM8 Cold Receptors Reveals a Role of TASK-3 Potassium Channels in Thermosensation. Cell Reports, 2014, 8, 1571-1582.	6.4	81

#	Article	IF	Citations
19	TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nature Communications, 2014, 5, 3125.	12.8	361
20	Bidirectional Modulation of Thermal and Chemical Sensitivity of TRPM8 Channels by the Initial Region of the N-terminal Domain. Journal of Biological Chemistry, 2014, 289, 21828-21843.	3.4	28
21	Plasma membranes as heat stress sensors: From lipid-controlled molecular switches to therapeutic applications. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1594-1618.	2.6	115
22	Targeting TRPM8 for Pain Relief. Open Pain Journal, 2013, 6, 154-164.	0.4	18
23	N-Glycosylation of TRPM8 Ion Channels Modulates Temperature Sensitivity of Cold Thermoreceptor Neurons. Journal of Biological Chemistry, 2012, 287, 18218-18229.	3.4	64
24	Role of <i>I</i> _h in the firing pattern of mammalian cold thermoreceptor endings. Journal of Neurophysiology, 2012, 108, 3009-3023.	1.8	31
25	TRPM8 Ion Channels Differentially Modulate Proliferation and Cell Cycle Distribution of Normal and Cancer Prostate Cells. PLoS ONE, 2012, 7, e51825.	2.5	76
26	The Influence of Cold Temperature on Cellular Excitability of Hippocampal Networks. PLoS ONE, 2012, 7, e52475.	2.5	22
27	Chemosensory Properties of the Trigeminal System. ACS Chemical Neuroscience, 2011, 2, 38-50.	3.5	149
28	The Emerging Pharmacology of TRPM8 Channels: Hidden Therapeutic Potential Underneath a Cold Surface. Current Pharmaceutical Biotechnology, 2011, 12, 54-67.	1.6	27
29	Pharmacological and functional properties of TRPM8 channels in prostate tumor cells. Pflugers Archiv European Journal of Physiology, 2011, 461, 99-114.	2.8	41
30	Membraneâ€tethered peptides patterned after the TRP domain (TRPducins) selectively inhibit TRPV1 channel activity. FASEB Journal, 2011, 25, 1628-1640.	0.5	37
31	Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nature Medicine, 2010, 16, 1396-1399.	30.7	270
32	Variable Threshold of Trigeminal Cold-Thermosensitive Neurons Is Determined by a Balance between TRPM8 and Kv1 Potassium Channels. Journal of Neuroscience, 2009, 29, 3120-3131.	3.6	169
33	Understanding the mechanisms of cold-evoked pain in humans. Pain, 2009, 147, 7-8.	4.2	4
34	Converting cold into pain. Experimental Brain Research, 2009, 196, 13-30.	1.5	99
35	Characteristics and physiological role of hyperpolarization activated currents in mouse cold thermoreceptors. Journal of Physiology, 2009, 587, 1961-1976.	2.9	57
36	Nicotine activates the chemosensory cation channel TRPA1. Nature Neuroscience, 2009, 12, 1293-1299.	14.8	214

#	Article	IF	Citations
37	Differential Role of the Menthol-Binding Residue Y745 in the Antagonism of Thermally Gated TRPM8 Channels. Molecular Pain, 2009, 5, 1744-8069-5-62.	2.1	54
38	Lipid Raft Segregation Modulates TRPM8 Channel Activity. Journal of Biological Chemistry, 2009, 284, 9215-9224.	3.4	104
39	TRPA1 modulators in preclinical development. Expert Opinion on Therapeutic Patents, 2009, 19, 1787-1799.	5.0	32
40	Hypoosmotic―and pressureâ€induced membrane stretch activate TRPC5 channels. Journal of Physiology, 2008, 586, 5633-5649.	2.9	123
41	Potassium channels shape and brake primary sensory neurone excitability. Journal of Physiology, 2008, 586, 5039-5040.	2.9	1
42	Funny currents are becoming serious players in nociceptor's sensitization. Journal of Physiology, 2008, 586, 5841-5842.	2.9	3
43	Molecular and Cellular Limits to Somatosensory Specificity. Molecular Pain, 2008, 4, 1744-8069-4-14.	2.1	116
44	TRPA1 channels: Novel targets of 1,4-dihydropyridines. Channels, 2008, 2, 429-438.	2.8	64
45	Identification of molecular determinants of channel gating in the transient receptor potential box of vanilloid receptor I. FASEB Journal, 2008, 22, 3298-3309.	0.5	79
46	Transient Receptor Potential Channels in Sensory Neurons Are Targets of the Antimycotic Agent Clotrimazole. Journal of Neuroscience, 2008, 28, 576-586.	3.6	103
47	TRPA1 Channels Mediate Cold Temperature Sensing in Mammalian Vagal Sensory Neurons: Pharmacological and Genetic Evidence. Journal of Neuroscience, 2008, 28, 7863-7875.	3.6	148
48	Transcriptional Control of Cholesterol Biosynthesis in Schwann Cells by Axonal Neuregulin 1. Journal of Biological Chemistry, 2007, 282, 28768-28778.	3.4	32
49	A Role of the Transient Receptor Potential Domain of Vanilloid Receptor I in Channel Gating. Journal of Neuroscience, 2007, 27, 11641-11650.	3.6	82
50	Comparative Effects of the Nonsteroidal Anti-inflammatory Drug Nepafenac on Corneal Sensory Nerve Fibers Responding to Chemical Irritation. , 2007, 48, 182.		26
51	Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. Journal of Physiology, 2007, 581, 155-174.	2.9	99
52	Cold sensitivity in axotomized fibers of experimental neuromas in mice. Pain, 2006, 120, 24-35.	4.2	29
53	Inhibition of a background potassium channel by Gq protein Â-subunits. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3422-3427.	7.1	128
54	Contribution of TRPM8 Channels to Cold Transduction in Primary Sensory Neurons and Peripheral Nerve Terminals. Journal of Neuroscience, 2006, 26, 12512-12525.	3.6	156

#	Article	IF	Citations
55	The contribution of TRPM8 channels to cold sensing in mammalian neurones. Journal of Physiology, 2005, 567, 415-426.	2.9	69
56	GAP43 stimulates inositol trisphosphate-mediated calcium release in response to hypotonicity. EMBO Journal, 2003, 22, 3004-3014.	7.8	31
57	Differential Thermosensitivity of Sensory Neurons in the Guinea Pig Trigeminal Ganglion. Journal of Neurophysiology, 2003, 90, 2219-2231.	1.8	26
58	Attenuation of thermal nociception and hyperalgesia by VR1 blockers. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2374-2379.	7.1	178
59	Postnatal Changes in Membrane Properties of Mice Trigeminal Ganglion Neurons. Journal of Neurophysiology, 2002, 87, 2398-2407.	1.8	40
60	Specificity of cold thermotransduction is determined by differential ionic channel expression. Nature Neuroscience, 2002, 5, 254-260.	14.8	316
61	Swelling-activated calcium signalling in cultured mouse primary sensory neurons. European Journal of Neuroscience, 2001, 13, 722-734.	2.6	66
62	Calcium signalling through nucleotide receptor P2Y2 in cultured human vascular endothelium. Cell Calcium, 1998, 24, 117-127.	2.4	38
63	ION CHANNELS IN VASCULAR ENDOTHELIUM. Annual Review of Physiology, 1997, 59, 145-170.	13.1	257
64	Neuromodulation of hypoglossal motoneurons: cellular and developmental mechanisms. Respiration Physiology, 1997, 110, 139-150.	2.7	86
65	Inhibition by mibefradil, a novel calcium channel antagonist, of Ca2+ - and volume-activated Clâ^' channels in macrovascular endothelial cells. British Journal of Pharmacology, 1997, 121, 547-555.	5.4	115
66	Mibefradil (Ro 40m5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium, 1997, 22, 299-311.	2.4	100
67	Calciummactivated potassium channels in cultured human endothelial cells are not directly modulated by nitric oxide. Cell Calcium, 1997, 21, 291-300.	2.4	36
68	Modulation of High Voltage-Activated Calcium Channels by Somatostatin in Acutely Isolated Rat Amygdaloid Neurons. Journal of Neuroscience, 1996, 16, 6000-6011.	3.6	71
69	Development of hypoglossal motoneurons. Journal of Applied Physiology, 1996, 81, 1039-1048.	2.5	70
70	Repetitive firing properties of developing rat brainstem motoneurones Journal of Physiology, 1995, 486, 745-761.	2.9	69
71	Volume-activated chloride currents are not correlated with P-glycoprotein expression. Biochemical Journal, 1995, 307, 713-718.	3.7	33
72	Drug-transport and volume-activated chloride channel functions in human erythroleukemia cells: Relation to expression level of P-glycoprotein. Journal of Membrane Biology, 1995, 145, 87-98.	2.1	27

#	Article	IF	CITATIONS
73	Lack of correlation between mdr-1 expression and volume-activation of cloride-currents in rat colon cancer cells. Pflugers Archiv European Journal of Physiology, 1995, 430, 296-298.	2.8	22
74	Postnatal Development of Hypoglossal Motoneuron Intrinsic Properties. Advances in Experimental Medicine and Biology, 1995, 381, 63-71.	1.6	32
75	Volume-activated Clâ^' currents in different mammalian non-excitable cell types. Pflugers Archiv European Journal of Physiology, 1994, 428, 364-371.	2.8	94
76	Effects of thyrotropin-releasing hormone on rat motoneurons are mediated by G proteins. Brain Research, 1994, 668, 220-229.	2.2	27
77	Postnatal changes in rat hypoglossal motoneuron membrane properties. Neuroscience, 1994, 59, 131-148.	2.3	102
78	Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons. Journal of Neurophysiology, 1993, 69, 2137-2149.	1.8	117
79	Thyrotropin-Releasing Hormone Causes Excitation of Rat Hypoglossal Motoneurons In Vitro. Sleep, 1993, 16, S49-S52.	1.1	8
80	Modulation of neonatal rat hypoglossal motoneuron excitability by serotonin. Neuroscience Letters, 1992, 143, 164-168.	2.1	168
81	Double- and triple-labeling of functionally characterized central neurons projecting to peripheral targets studied in vitro. Neuroscience, 1990, 38, 829-841.	2.3	64
82	Electrophysiological determination of the axonal projections of single dorsal respiratory group neurons to the cervical spinal cord of cat. Brain Research, 1988, 454, 31-39.	2.2	13
83	Projections and terminations of single respiratory axons in the cervical spinal cord of cat. Brain Research, 1988, 449, 201-212.	2.2	8
84	Repetitive firing properties of phrenic motoneurons in the cat. Journal of Neurophysiology, 1988, 60, 687-702.	1.8	35
85	Heat Pain and Cold Pain. , 0, , 179-199.		6