Hrant P Hratchian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7868564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A density functional theory investigation of the reaction of water with Ce2Oâ^'. Computational and Theoretical Chemistry, 2022, 1209, 113603.	2.5	0
2	Using projection operators with maximum overlap methods to simplify challenging self onsistent field optimization. Journal of Computational Chemistry, 2022, 43, 382-390.	3.3	9
3	Comparison of Linear Response Theory, Projected Initial Maximum Overlap Method, and Molecular Dynamics-Based Vibronic Spectra: The Case of Methylene Blue. Journal of Chemical Theory and Computation, 2022, 18, 3039-3051.	5.3	2
4	Enhanced Reactivity for Aromatic Bromination via Halogen Bonding with Lactic Acid Derivatives. Journal of Organic Chemistry, 2022, 87, 8492-8502.	3.2	7
5	Photoelectron Spectra of Gd ₂ O ₂ [–] and Nonmonotonic Photon-Energy-Dependent Variations in Populations of Close-Lying Neutral States. Journal of Physical Chemistry A, 2021, 125, 857-866.	2.5	9
6	ΔSCF Dyson orbitals and pole strengths from natural ionization orbitals. Journal of Chemical Physics, 2021, 154, 084104.	3.0	5
7	Versatile New Reagent for Nitrosation under Mild Conditions. Organic Letters, 2021, 23, 3253-3258.	4.6	8
8	Lanthanide Oxides: From Diatomics to High-Spin, Strongly Correlated Homo- and Heterometallic Clusters. Journal of Physical Chemistry A, 2021, 125, 6315-6331.	2.5	3
9	New Photoelectron–Valence Electron Interactions Evident in the Photoelectron Spectrum of Gd ₂ O [–] . Journal of Physical Chemistry A, 2021, 125, 9892-9903.	2.5	6
10	Assessing the Calculation of Exchange Coupling Constants and Spin Crossover Gaps Using the Approximate Projection Model To Improve Density Functional Calculations. Journal of Chemical Theory and Computation, 2020, 16, 154-163.	5.3	6
11	Unveiling the coexistence of <i>cis-</i> and <i>trans</i> -isomers in the hydrolysis of ZrO2: A coupled DFT and high-resolution photoelectron spectroscopy study. Journal of Chemical Physics, 2020, 153, 244308.	3.0	3
12	Exceptionally Complex Electronic Structures of Lanthanide Oxides and Small Molecules. Accounts of Chemical Research, 2019, 52, 3265-3273.	15.6	20
13	Experimental and Theoretical Evidence for Nitrogen–Fluorine Halogen Bonding in Silver-Initiated Radical Fluorinations. ACS Catalysis, 2019, 9, 3322-3326.	11.2	29
14	Dispersion-Controlled Regioselective Acid-Catalyzed Intramolecular Hydroindolation of <i>cis</i> -Methindolylstyrenes To Access Tetrahydrobenzo[<i>cd</i>]indoles. Organic Letters, 2019, 21, 1574-1577.	4.6	10
15	Electronic and Molecular Structures of the CeB ₆ Monomer. Journal of Physical Chemistry A, 2019, 123, 2040-2048.	2.5	22
16	Aiming toward an Effective Hispanic-Serving Chemistry Curriculum. ACS Symposium Series, 2019, , 49-66.	0.5	1
17	On the linear geometry of lanthanide hydroxide (Ln-OH, Ln = La–Lu). Physical Chemistry Chemical Physics, 2019, 21, 21890-21897.	2.8	1
18	On approximate projection models. Molecular Physics, 2019, 117, 1421-1429.	1.7	13

HRANT P HRATCHIAN

#	Article	IF	CITATIONS
19	High-resolution photoelectron spectroscopy of TiO3H2â^': Probing the TiO2â^' + H2O dissociative adduct. Journal of Chemical Physics, 2018, 148, 222810.	3.0	20
20	A Tale of Two Stabilities: How One Boron Atom Affects a Switch in Bonding Motifs in CeO ₂ B _{<i>x</i>} [–] (<i>x</i> = 2, 3) Complexes. Journal of Physical Chemistry A, 2018, 122, 9879-9885.	2.5	9
21	Exotic electronic structures of SmxCe3â^'xOy (x = 0-3; y = 2-4) clusters and the effect of high neutral density of low-lying states on photodetachment transition intensities. Journal of Chemical Physics, 2018, 149, 054305.	3.0	13
22	Explaining the MoVO4â^' photoelectron spectrum: Rationalization of geometric and electronic structure. Journal of Chemical Physics, 2017, 146, 104301.	3.0	14
23	Modeling emission features of salicylidene aniline molecular crystals: A QM/QM' approach. Journal of Computational Chemistry, 2016, 37, 861-870.	3.3	26
24	Natural ionization orbitals for interpreting electron detachment processes. Journal of Chemical Physics, 2016, 144, 204117.	3.0	19
25	On the Driving Force of the Excited-State Proton Shuttle in the Green Fluorescent Protein: A Time-Dependent Density Functional Theory (TD-DFT) Study of the Intrinsic Reaction Path. Journal of Chemical Theory and Computation, 2016, 12, 4925-4933.	5.3	33
26	The Strongest Acid: Protonation of Carbon Dioxide. Angewandte Chemie - International Edition, 2016, 55, 1382-1386.	13.8	33
27	Second derivatives for approximate spin projection methods. Journal of Chemical Physics, 2015, 142, 054106.	3.0	16
28	Modeling the Photoelectron Spectra of MoNbO ₂ [–] Accounting for Spin Contamination in Density Functional Theory. Journal of Physical Chemistry A, 2015, 119, 8744-8751.	2.5	18
29	Spin projection with double hybrid density functional theory. Journal of Chemical Physics, 2014, 141, 034108.	3.0	18
30	Computational Protocol for Modeling Thermochromic Molecular Crystals: Salicylidene Aniline As a Case Study. Journal of Chemical Theory and Computation, 2014, 10, 5577-5585.	5.3	44
31	Communication: An efficient analytic gradient theory for approximate spin projection methods. Journal of Chemical Physics, 2013, 138, 101101.	3.0	26
32	Improved Predictor–Corrector Integrators For Evaluating Reaction Path Curvature. Journal of Chemical Theory and Computation, 2013, 9, 1481-1488.	5.3	27
33	Divalent pseudoatoms for modeling Si(100) surfaces. Journal of Chemical Physics, 2013, 139, 164708.	3.0	3
34	Using Efficient Predictor-Corrector Reaction Path Integrators for Studies Involving Projected Frequencies. Journal of Chemical Theory and Computation, 2012, 8, 5013-5019.	5.3	6
35	Thirty Years of Geometry Optimization in Quantum Chemistry and Beyond: A Tribute to Berny Schlegel. Journal of Chemical Theory and Computation, 2012, 8, 4853-4855.	5.3	2
36	Integrating steepest-descent reaction pathways for large molecules. Journal of Chemical Physics, 2011, 134, 204103.	3.0	31

HRANT P HRATCHIAN

#	Article	IF	CITATIONS
37	QM:QM embedding using electronic densities within an ONIOM framework: Energies and analytic gradients. Journal of Chemical Physics, 2011, 135, 014105.	3.0	20
38	Insights into Working Principles of Ruthenium Polypyridyl Dye-Sensitized Solar Cells from First Principles Modeling. Journal of Physical Chemistry C, 2011, 115, 4297-4306.	3.1	71
39	Steepest descent reaction path integration using a first-order predictor–corrector method. Journal of Chemical Physics, 2010, 133, 224101.	3.0	63
40	ONIOM-based QM:QM electronic embedding method using Löwdin atomic charges: Energies and analytic gradients. Journal of Chemical Physics, 2010, 132, 114107.	3.0	37
41	First Principles Modeling of Eosin-Loaded ZnO Films: A Step toward the Understanding of Dye-Sensitized Solar Cell Performances. Journal of the American Chemical Society, 2009, 131, 14290-14298.	13.7	124
42	Applications and assessment of QM:QM electronic embedding using generalized asymmetric Mulliken atomic charges. Journal of Chemical Physics, 2008, 129, 145101.	3.0	25
43	QM:QM electronic embedding using Mulliken atomic charges: Energies and analytic gradients in an ONIOM framework. Journal of Chemical Physics, 2008, 128, 034107.	3.0	81
44	Archetypical Modeling and Amphiphilic Behavior of Cobalt(II)-Containing Soft-Materials with Asymmetric Tridentate Ligands. Inorganic Chemistry, 2007, 46, 9808-9818.	4.0	44
45	Amphiphilic and Magnetic Properties of a New Class of Clusterâ€Bearing [L ₂ Cu ₄ (μ4 ₄ â€O)(μ4 ₂ â€carboxylato) ₄] Soft Materials. Chemistry - A European Journal, 2007, 13, 9948-9956.	3.3	25
46	Structural, spectroscopic, and electrochemical behavior of trans-phenolato cobalt(iii) complexes of asymmetric NN′O ligands as archetypes for metallomesogens. Dalton Transactions, 2006, , 2517-2525.	3.3	55
47	Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis. Physical Chemistry Chemical Physics, 2006, 8, 1371.	2.8	63
48	Structural and Electronic Behavior of Unprecedented Five-Coordinate Iron(III) and Gallium(III) Complexes with a New Phenol-Rich Electroactive Ligand. Inorganic Chemistry, 2006, 45, 955-957.	4.0	55
49	Hydrogen-Bonding Interactions in Peptide Nucleic Acid and Deoxyribonucleic Acid:  A Comparative Study. Journal of Physical Chemistry B, 2006, 110, 3336-3343.	2.6	20
50	First principles determination of 99Ru chemical shifts using moderately sized basis sets. Computational and Theoretical Chemistry, 2005, 724, 45-52.	1.5	6
51	Theoretical Investigation of Uranyl Dihydroxide: Oxo Ligand Exchange, Water Catalysis, and Vibrational Spectra. ChemInform, 2005, 36, no.	0.0	0
52	Theoretical Investigation of Uranyl Dihydroxide:Â Oxo Ligand Exchange, Water Catalysis, and Vibrational Spectra. Journal of Physical Chemistry A, 2005, 109, 8579-8586.	2.5	35
53	Influence of Ligand Rigidity and Ring Substitution on the Structural and Electronic Behavior of Trivalent Iron and Gallium Complexes with Asymmetric Tridentate Ligands. Inorganic Chemistry, 2005, 44, 7414-7422.	4.0	80
54	Using Hessian Updating To Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method. Journal of Chemical Theory and Computation, 2005, 1, 61-69.	5.3	810

HRANT P HRATCHIAN

#	Article	IF	CITATIONS
55	Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. , 2005, , 195-249.		266
56	Combined Experimental and Computational Investigation of the Mechanism of Nickel-Catalyzed Three-Component Addition Processes. Organometallics, 2004, 23, 4636-4646.	2.3	106
57	Accurate reaction paths using a Hessian based predictor–corrector integrator. Journal of Chemical Physics, 2004, 120, 9918-9924.	3.0	796
58	Following Reaction Pathways Using a Damped Classical Trajectory Algorithm. Journal of Physical Chemistry A, 2002, 106, 165-169.	2.5	63
59	Theoretical investigation of substituent effects on the silicon–metal bond for a series of transition metal-substituted base-stabilized silylene complexes. Polyhedron, 2001, 20, 209-213.	2.2	7