Onofrio Gigliotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7868388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indexes for the E-Baking Tray Task: A Look on Laterality, Verticality and Quality of Exploration. Brain Sciences, 2022, 12, 401.	2.3	2
2	Further to the Left: Stress-Induced Increase of Spatial Pseudoneglect During the COVID-19 Lockdown. Frontiers in Psychology, 2021, 12, 573846.	2.1	24
3	Behavioral Restriction Determines Left Attentional Bias: Preliminary Evidences From COVID-19 Lockdown. Frontiers in Psychology, 2021, 12, 650715.	2.1	8
4	The Assessment of Visuospatial Abilities with Tangible Interfaces and Machine Learning. Lecture Notes in Computer Science, 2019, , 78-87.	1.3	8
5	The Number Interval Position Effect (NIPE) in the mental bisection of numerical intervals might reflect the influence of the decimal-number system on the Gaussian representations of numerosities: A combined developmental and computational-modeling study. Cortex, 2019, 114, 164-175.	2.4	8
6	Editorial. Learning and assessment in natural and artificial systems. Qwerty, 2019, 14, .	0.6	0
7	Equal but different: Task allocation in homogeneous communicating robots. Neurocomputing, 2018, 272, 3-9.	5.9	5
8	Breeding Robots to Learn How to Rule Complex Systems. Advances in Intelligent Systems and Computing, 2017, , 137-142.	0.6	4
9	Simulative Models to Understand Numerical Cognition. Lecture Notes in Computer Science, 2017, , 75-84.	1.3	1
10	Basic emotions and adaptation. A computational and evolutionary model. PLoS ONE, 2017, 12, e0187463.	2.5	19
11	Pseudoneglect in Visual Search: Behavioral Evidence and Connectional Constraints in Simulated Neural Circuitry. ENeuro, 2017, 4, ENEURO.0154-17.2017.	1.9	33
12	Task Allocation in Evolved Communicating Homogeneous Robots: The Importance of Being Different. Advances in Intelligent Systems and Computing, 2016, , 181-190.	0.6	3
13	Approaching neuropsychological tasks through adaptive neurorobots. Connection Science, 2015, 27, 153-163.	3.0	7
14	Neuromodelling based on evolutionary robotics: on the importance of motor control for spatial attention. Cognitive Processing, 2015, 16, 237-240.	1.4	4
15	The ITALK Project: A Developmental Robotics Approach to the Study of Individual, Social, and Linguistic Learning. Topics in Cognitive Science, 2014, 6, 534-544.	1.9	17
16	Designing adaptive humanoid robots through the FARSA open-source framework. Adaptive Behavior, 2014, 22, 255-265.	1.9	18
17	Communication based dynamic role allocation in a group of homogeneous robots. Natural Computing, 2014, 13, 391-402.	3.0	12
18	Introducing Interactive Evolutionary Computation in Data Clustering. Communications in Computer and Information Science, 2014, , 26-36.	0.5	0

ONOFRIO GIGLIOTTA

#	Article	lF	CITATIONS
19	Studying the Evolutionary Basis of Emotions Through Adaptive Neuroagents: Preliminary Settings and Results. Communications in Computer and Information Science, 2014, , 47-57.	0.5	1
20	Evolution of a predictive internal model in an embodied and situated agent. Theory in Biosciences, 2011, 130, 259-276.	1.4	14
21	For Corvids together Is Better. Lecture Notes in Computer Science, 2011, , 222-229.	1.3	0
22	Evorobot*. , 2010, , 297-301.		9
23	Emergence of an Internal Model in Evolving Robots Subjected to Sensory Deprivation. Lecture Notes in Computer Science, 2010, , 575-586.	1.3	4
24	WHO IS THE LEADER? DYNAMIC ROLE ALLOCATION THROUGH COMMUNICATION IN A POPULATION OF HOMOGENEOUS ROBOTS. , 2009, , .		3
25	Human breeders for evolving robots. Artificial Life and Robotics, 2008, 13, 1-4.	1.2	2
26	On the Coupling Between Agent Internal and Agent/ Environmental Dynamics: Development of Spatial Representations in Evolving Autonomous Robots. Adaptive Behavior, 2008, 16, 148-165.	1.9	22
27	Breedbot: an evolutionary robotics application in digital content. Electronic Library, 2008, 26, 363-373.	1.4	20
28	TeamSim: An Educational Micro-world for the Teaching of Team Dynamics. Studies in Computational Intelligence, 2008, , 417-425.	0.9	1
29	Artificial organisms as tools for the development of psychological theory: Tolman's lesson. Cognitive Processing, 2007, 8, 261-277.	1.4	2
30	Breedbot: An Edutainment Robotics System to Link Digital and Real World. Lecture Notes in Computer Science, 2007, , 74-81.	1.3	9
31	FARSA: An Open Software Tool for Embodied Cognitive Science. , 0, , .		7
32	Evolution of Communication-Based Collaborative Behavior in Homogeneous Robots. , 0, , .		1

Evolution of Communication-Based Collaborative Behavior in Homogeneous Robots. , 0, , . 32