Robert A Dunn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7867606/publications.pdf

Version: 2024-02-01

39 papers 1,610 citations

20 h-index 302126 39 g-index

40 all docs

40 docs citations

40 times ranked

1439 citing authors

#	Article	IF	CITATIONS
1	A Seismic Tomography, Gravity, and Flexure Study of the Crust and Upper Mantle Structure of the Emperor Seamounts at Jimmu Guyot. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	5
2	Seismic Structure, Gravity Anomalies and Flexure Along the Emperor Seamount Chain. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021109.	3.4	10
3	Uppermost crustal structure across the eastern Lau spreading center from P-to-S converted waves. Marine Geophysical Researches, 2020, 41, 1.	1.2	2
4	Evaluation of Shipboard and Satelliteâ€Derived Bathymetry and Gravity Data Over Seamounts in the Northwest Pacific Ocean. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020396.	3.4	18
5	Local Seismicity of the Rainbow Massif on the Midâ€Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 2018, 123, 1615-1630.	3.4	17
6	Seismic imaging of magma sills beneath an ultramafic-hosted hydrothermal system. Geology, 2017, 45, 451-454.	4.4	42
7	Threeâ€Dimensional Seismic Structure of the Midâ€Atlantic Ridge: An Investigation of Tectonic, Magmatic, and Hydrothermal Processes in the Rainbow Area. Journal of Geophysical Research: Solid Earth, 2017, 122, 9580-9602.	3.4	34
8	Segmentâ€scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, M id―A tlantic R idge Rainbow region (35°45′–36°35′N). Geochemistry, Geophysics, Geosystems, 20 3560-3579.	01 6, 517,	13
9	Ocean acoustic reverberation tomography. Journal of the Acoustical Society of America, 2015, 138, 3458-3469.	1.1	1
10	Heterogeneous and asymmetric crustal accretion: New constraints from multibeam bathymetry and potential field data from the Rainbow area of the <scp>M</scp> idâ€ <scp>A</scp> tlantic <scp>R</scp> idge (36°15'N). Geochemistry, Geophysics, Geosystems, 2015, 16, 2994-3014.	2.5	21
11	Low frequency baleen whale calls detected on ocean-bottom seismometers in the Lau basin, southwest Pacific Ocean. Journal of the Acoustical Society of America, 2015, 137, 53-62.	1.1	15
12	Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. Nature, 2015, 518, 395-398.	27.8	39
13	The origin of shear wave splitting beneath Iceland. Geophysical Journal International, 2015, 201, 1297-1312.	2.4	5
14	Tracking stress and hydrothermal activity along the Eastern Lau Spreading Center using seismic anisotropy. Earth and Planetary Science Letters, 2015, 410, 105-116.	4.4	7
15	Petrogenesis and structure of oceanic crust in the Lau back-arc basin. Earth and Planetary Science Letters, 2015, 429, 128-138.	4.4	18
16	Seismological imaging of ridge–arc interaction beneath the Eastern Lau Spreading Center from OBS ambient noise tomography. Earth and Planetary Science Letters, 2014, 408, 194-206.	4.4	25
17	Seismic anisotropy and shear wave splitting associated with mantle plumeâ€plate interaction. Journal of Geophysical Research: Solid Earth, 2014, 119, 4923-4937.	3.4	19
18	Seismological study of Lau back arc crust: Mantle water, magmatic differentiation, and a compositionally zoned basin. Earth and Planetary Science Letters, 2014, 390, 304-317.	4.4	34

#	Article	IF	Citations
19	Crustal construction and magma chamber properties along the Eastern Lau Spreading Center. Earth and Planetary Science Letters, 2013, 371-372, 112-124.	4.4	23
20	Investigating seismic anisotropy beneath the Reykjanes Ridge using models of mantle flow, crystallographic evolution, and surface wave propagation. Geochemistry, Geophysics, Geosystems, 2013, 14, 3250-3267.	2.5	7
21	Seismic shear wave structure of the uppermost mantle beneath the Mohns Ridge. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	13
22	Contrasting crustal production and rapid mantle transitions beneath back-arc ridges. Nature, 2011, 469, 198-202.	27.8	61
23	Tracking blue whales in the eastern tropical Pacific with an ocean-bottom seismometer and hydrophone array. Journal of the Acoustical Society of America, 2009, 126, 1084-1094.	1.1	35
24	Toomey et al. reply. Nature, 2009, 458, E12-E13.	27.8	2
25	The Predictive Accuracy of Shoreline Change Rate Methods and Alongshore Beach Variation on Maui, Hawaii. Journal of Coastal Research, 2007, 231, 87-105.	0.3	187
26	Evaluating hot spot-ridge interaction in the Atlantic from regional-scale seismic observations. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	26
27	Surface wave tomography of the upper mantle beneath the Reykjanes Ridge with implications for ridge a \in "hot spot interaction. Journal of Geophysical Research, 2007, 112, .	3.3	38
28	Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature, 2007, 446, 409-414.	27.8	110
29	Crust and Lithospheric Structure – Seismic Structure of Mid-Ocean Ridges. , 2007, , 419-443.		10
30	Three-dimensional seismic structure of the Mid-Atlantic Ridge (35 \hat{A}° N): Evidence for focused melt supply and lower crustal dike injection. Journal of Geophysical Research, 2005, 110, .	3.3	119
31	Modeling the seismic signature of structural data from the Oman Ophiolite: Can a mantle diapir be detected beneath the East Pacific Rise?. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	5
32	Imaging the transition between the region of mantle melt generation and the crustal magma chamber beneath the southern East Pacific Rise with short-period Love waves. Journal of Geophysical Research, 2003, 108, .	3.3	64
33	A numerical model of hydrothermal cooling and crustal accretion at a fast spreading mid-ocean ridge. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	2.5	72
34	A detailed comparison of repeated bathymetric surveys along a 300-km-long section of the southern East Pacific Rise. Journal of Geophysical Research, 2001, 106, 463-471.	3.3	6
35	Crack-induced seismic anisotropy in the oceanic crust across the East Pacific Rise (9°30â€2N). Earth and Planetary Science Letters, 2001, 189, 9-17.	4.4	53
36	Continuous Mantle Melt Supply Beneath an Overlapping Spreading Center on the East Pacific Rise. Science, 2001, 291, 1955-1958.	12.6	48

ROBERT A DUNN

#	Article	IF	CITATIONS
37	Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30'N. Journal of Geophysical Research, 2000, 105, 23537-23555.	3.3	288
38	Building Domain-Specific Environments for Computational Science: a Case Study in Seismic Tomography. International Journal of High Performance Computing Applications, 1997, 11, 179-196.	1.5	16
39	Seismological evidence for three-dimensional melt migration beneath the East Pacific Rise. Nature, 1997, 388, 259-262.	27.8	95