Lin-Sen Zan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/786693/publications.pdf

Version: 2024-02-01

430874 526287 47 869 18 27 citations h-index g-index papers 47 47 47 932 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Genetic Architecture and Selection of Chinese Cattle Revealed by Whole Genome Resequencing. Molecular Biology and Evolution, 2018, 35, 688-699.	8.9	97
2	Current situation and future prospects for beef production in China $\hat{a} \in$ A review. Asian-Australasian Journal of Animal Sciences, 2018, 31, 984-991.	2.4	42
3	Muscle transcriptomic analyses in Angus cattle with divergent tenderness. Molecular Biology Reports, 2012, 39, 4185-4193.	2.3	40
4	Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic differentiation via myozenin 2 in bovine skeletal muscle myoblast. PLoS ONE, 2018, 13, e0196255.	2.5	39
5	Copy number variation detection in Chinese indigenous cattle by whole genome sequencing. Genomics, 2020, 112, 831-836.	2.9	39
6	Beneficial effects and health benefits of Astaxanthin molecules on animal production: A review. Research in Veterinary Science, 2021, 138, 69-78.	1.9	39
7	Functional Genomic Analysis of Variation on Beef Tenderness Induced by Acute Stress in Angus Cattle. Comparative and Functional Genomics, 2012, 2012, 1-11.	2.0	38
8	Genetic variants in the promoter region of the KLF3 gene associated with fat deposition in Qinchuan cattle. Gene, 2018, 672, 50-55.	2.2	35
9	The Role of MicroRNAs in Muscle Tissue Development in Beef Cattle. Genes, 2020, 11, 295.	2.4	34
10	Whole-genome sequencing of the endangered bovine species Gayal (Bos frontalis) provides new insights into its genetic features. Scientific Reports, 2016, 6, 19787.	3.3	32
11	Transcriptome analysis of mRNA and microRNAs in intramuscular fat tissues of castrated and intact male Chinese Qinchuan cattle. PLoS ONE, 2017, 12, e0185961.	2.5	31
12	Expression of the bovine KLF6 gene polymorphisms and their association with carcass and body measures in Qinchuan cattle (Bos Taurus). Genomics, 2020, 112, 423-431.	2.9	31
13	Genome-wide analysis reveals the effects of artificial selection on production and meat quality traits in Qinchuan cattle. Genomics, 2019, 111, 1201-1208.	2.9	27
14	Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Archives of Biochemistry and Biophysics, 2020, 694, 108543.	3.0	26
15	MiR-145 reduces the activity of PI3K/Akt and MAPK signaling pathways and inhibits adipogenesis in bovine preadipocytes. Genomics, 2020, 112, 2688-2694.	2.9	25
16	Genetic Variants in STAT3 Promoter Regions and Their Application in Molecular Breeding for Body Size Traits in Qinchuan Cattle. International Journal of Molecular Sciences, 2018, 19, 1035.	4.1	24
17	Cooperative and Independent Functions of the miR-23a~27a~24-2 Cluster in Bovine Adipocyte Adipogenesis. International Journal of Molecular Sciences, 2018, 19, 3957.	4.1	22

Expression of the SIRT2 Gene and Its Relationship with Body Size Traits in Qinchuan Cattle (Bos) Tj ETQq0 0 0 rgBT $\frac{10}{20}$ Tf 50 6

#	Article	IF	CITATIONS
19	Genetic variants in MYF5 affected growth traits and beef quality traits in Chinese Qinchuan cattle. Genomics, 2020, 112, 2804-2812.	2.9	18
20	Genetic variants and haplotype combination in the bovine CRTC3 affected conformation traits in two Chinese native cattle breeds (Bos Taurus). Genomics, 2019, 111, 1736-1744.	2.9	17
21	MEF2A Regulates the MEG3-DIO3 miRNA Mega Cluster-Targeted PP2A Signaling in Bovine Skeletal Myoblast Differentiation. International Journal of Molecular Sciences, 2019, 20, 2748.	4.1	15
22	Polymorphisms in adrenergic receptor genes in Qinchuan cattle show associations with selected carcass traits. Meat Science, 2018, 135, 166-173.	5 . 5	13
23	Sequence analysis of bovine C/EBPδgene and its adipogenic effects on fibroblasts. Molecular Biology Reports, 2014, 41, 251-257.	2.3	12
24	The Expression Pattern of PLIN2 in Differentiated Adipocytes from Qinchuan Cattle Analysis of Its Protein Structure and Interaction with CGI-58. International Journal of Molecular Sciences, 2018, 19, 1336.	4.1	12
25	Bta-miR-376a Targeting KLF15 Interferes with Adipogenesis Signaling Pathway to Promote Differentiation of Qinchuan Beef Cattle Preadipocytes. Animals, 2020, 10, 2362.	2.3	12
26	Associations between allelic polymorphism of the BMP Binding Endothelial Regulator and phenotypic variation of cattle. Molecular and Cellular Probes, 2015, 29, 358-364.	2.1	10
27	Tissue Expression Analysis and Characterization of Smad3 Promoter in Bovine Myoblasts and Preadipocytes. DNA and Cell Biology, 2018, 37, 551-559.	1.9	10
28	Transcriptome-wide N6-Methyladenosine Methylome Profiling Reveals m6A Regulation of Skeletal Myoblast Differentiation in Cattle (Bos taurus). Frontiers in Cell and Developmental Biology, 2021, 9, 785380.	3.7	10
29	CREB1 promotes proliferation and differentiation by mediating the transcription of CCNA2 and MYOG in bovine myoblasts. International Journal of Biological Macromolecules, 2022, 216, 32-41.	7.5	10
30	Neudesin Neurotrophic Factor Promotes Bovine Preadipocyte Differentiation and Inhibits Myoblast Myogenesis. Animals, 2019, 9, 1109.	2.3	9
31	Insights into adaption and growth evolution: a comparative genomics study on two distinct cattle breeds from Northern and Southern China. Molecular Therapy - Nucleic Acids, 2021, 23, 959-967.	5.1	9
32	MiR-33a plays a crucial role in the proliferation of bovine preadipocytes. Adipocyte, 2021, 10, 189-200.	2.8	8
33	Effect of Actin Alpha Cardiac Muscle 1 on the Proliferation and Differentiation of Bovine Myoblasts and Preadipocytes. Animals, 2021, 11 , 3468.	2.3	8
34	MEF2C Expression Is Regulated by the Post-transcriptional Activation of the METTL3-m6A-YTHDF1 Axis in Myoblast Differentiation. Frontiers in Veterinary Science, 2022, 9, 900924.	2.2	8
35	Analysis of stability of reference genes for qPCR in bovine preadipocytes during proliferation and differentiation in vitro. Gene, 2022, 830, 146502.	2.2	7
36	The role of BAMBI in regulating adipogenesis and myogenesis and the association between its polymorphisms and growth traits in cattle. Molecular Biology Reports, 2020, 47, 5963-5974.	2.3	6

#	Article	IF	CITATIONS
37	Overexpression of the Rybp Gene Inhibits Differentiation of Bovine Myoblasts into Myotubes. International Journal of Molecular Sciences, 2018, 19, 2082.	4.1	5
38	m6A Methylases Regulate Myoblast Proliferation, Apoptosis and Differentiation. Animals, 2022, 12, 773.	2.3	5
39	Investigation into the underlying molecular mechanisms of white adipose tissue through comparative transcriptome analysis of multiple tissues. Molecular Medicine Reports, 2018, 19, 959-966.	2.4	4
40	Effects of Various Processing Methods on the Ultrastructure of Tendon Collagen Fibrils from Qinchuan Beef Cattle Observed with Atomic Force Microscopy. Journal of Food Quality, 2018, 2018, 1-10.	2.6	4
41	Performance Measurement and Comparative Transcriptome Analysis Revealed the Efforts on Hybrid Improvement of Qinchuan Cattle. Animal Biotechnology, 2019, 30, 13-20.	1.5	4
42	Effect of Neudesin Neurotrophic Factor on Differentiation of Bovine Preadipocytes and Myoblasts in a Co-Culture System. Animals, 2021, 11, 34.	2.3	4
43	Screening and validation of reference genes for qRT-PCR of bovine skeletal muscle-derived satellite cells. Scientific Reports, 2022, 12, 5653.	3.3	4
44	Selection signatures of Qinchuan cattle based on whole-genome sequences. Animal Biotechnology, 2022, , 1-9.	1.5	3
45	The role of BBS2 in regulating adipogenesis and the association of its sequence variants with meat quality in Qinchuan cattle. Genomics, 2022, 114, 110416.	2.9	1
46	Identification of genetic variants the CCKAR gene and based on body measurement and carcass quality characteristics in Qinchuan beef cattle (Bos taurus). Electronic Journal of Biotechnology, 2021, 51, 1-7.	2.2	0
47	Bioinformatics and genetic variants analysis of <i>FGF10</i> gene promoter with their association at carcass quality and body measurement traits in Qinchuan beef cattle. Animal Biotechnology, 2023, 34, 1950-1959.	1.5	0