
Travis D Goode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7866840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Convergent Coding of Recent and Remote Fear Memory in the Basolateral Amygdala. Biological Psychiatry, 2022, 91, 832-840.	1.3	19
2	Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Frontiers in Systems Neuroscience, 2022, 16, 888461.	2.5	15
3	Sex differences in the immediate extinction deficit and renewal of extinguished fear in rats. PLoS ONE, 2022, 17, e0264797.	2.5	13
4	Covert capture and attenuation of a hippocampus-dependent fear memory. Nature Neuroscience, 2021, 24, 677-684.	14.8	29
5	Behavioral and brain mechanisms mediating conditioned flight behavior in rats. Scientific Reports, 2021, 11, 8215.	3.3	30
6	Behavioral and neurobiological mechanisms of pavlovian and instrumental extinction learning. Physiological Reviews, 2021, 101, 611-681.	28.8	163
7	Ventral hippocampus mediates the context-dependence of two-way signaled avoidance in male rats. Neurobiology of Learning and Memory, 2021, 183, 107458.	1.9	11
8	Locus Coeruleus Norepinephrine Drives Stress-Induced Increases in Basolateral Amygdala Firing and Impairs Extinction Learning. Journal of Neuroscience, 2020, 40, 907-916.	3.6	61
9	Threat imminence dictates the role of the bed nucleus of the stria terminalis in contextual fear. Neurobiology of Learning and Memory, 2020, 167, 107116.	1.9	31
10	An Integrated Index: Engrams, Place Cells, and Hippocampal Memory. Neuron, 2020, 107, 805-820.	8.1	86
11	NMDA receptors in the CeA and BNST differentially regulate fear conditioning to predictable and unpredictable threats. Neurobiology of Learning and Memory, 2020, 174, 107281.	1.9	9
12	Event boundaries do not cause the immediate extinction deficit after Pavlovian fear conditioning in rats. Scientific Reports, 2019, 9, 9459.	3.3	8
13	Nucleus reuniens mediates the extinction of contextual fear conditioning. Behavioural Brain Research, 2019, 374, 112114.	2.2	39
14	Making translation work: Harmonizing cross-species methodology in the behavioural neuroscience of Pavlovian fear conditioning. Neuroscience and Biobehavioral Reviews, 2019, 107, 329-345.	6.1	58
15	Role of the Bed Nucleus of the Stria Terminalis in PTSD: Insights From Preclinical Models. Frontiers in Behavioral Neuroscience, 2019, 13, 68.	2.0	45
16	Locus coeruleus toggles reciprocal prefrontal firing to reinstate fear. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8570-8575.	7.1	36
17	Synaptic encoding of fear memories in the amygdala. Current Opinion in Neurobiology, 2019, 54, 54-59.	4.2	90
18	Distinct Activity Patterns of the Human Bed Nucleus of the Stria Terminalis and Amygdala during Fear Learning. Neuropsychology Review, 2019, 29, 181-185.	4.9	16

#	Article	IF	CITATIONS
19	Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology, 2019, 236, 415-437.	3.1	60
20	Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. ELife, 2019, 8, .	6.0	78
21	Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nature Neuroscience, 2018, 21, 384-392.	14.8	165
22	Flexibility in the face of fear: hippocampal–prefrontal regulation of fear and avoidance. Current Opinion in Behavioral Sciences, 2018, 19, 44-49.	3.9	55
23	Nucleus Reuniens Is Required for Encoding and Retrieving Precise, Hippocampal-Dependent Contextual Fear Memories in Rats. Journal of Neuroscience, 2018, 38, 9925-9933.	3.6	69
24	Prefrontal projections to the thalamic nucleus reuniens mediate fear extinction. Nature Communications, 2018, 9, 4527.	12.8	84
25	Neural Circuits for Fear Relapse. , 2018, , 182-202.		7
26	Noradrenergic Modulation of Fear Conditioning and Extinction. Frontiers in Behavioral Neuroscience, 2018, 12, 43.	2.0	137
27	Allopregnanolone induces state-dependent fear via the bed nucleus of the stria terminalis. Hormones and Behavior, 2017, 89, 137-144.	2.1	17
28	Extinction after fear memory reactivation fails to eliminate renewal in rats. Neurobiology of Learning and Memory, 2017, 142, 41-47.	1.9	18
29	β-Adrenoceptor Blockade in the Basolateral Amygdala, But Not the Medial Prefrontal Cortex, Rescues the Immediate Extinction Deficit. Neuropsychopharmacology, 2017, 42, 2537-2544.	5.4	42
30	Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learning and Memory, 2017, 24, 480-491.	1.3	106
31	Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats. PLoS ONE, 2016, 11, e0165256.	2.5	30
32	Renewal of extinguished fear activates ventral hippocampal neurons projecting to the prelimbic and infralimbic cortices in rats. Neurobiology of Learning and Memory, 2016, 134, 38-43.	1.9	56
33	Enhancement of striatum-dependent memory by conditioned fear is mediated by beta-adrenergic receptors in the basolateral amygdala. Neurobiology of Stress, 2016, 3, 74-82.	4.0	31
34	Revisiting propranolol and PTSD: Memory erasure or extinction enhancement?. Neurobiology of Learning and Memory, 2016, 130, 26-33.	1.9	104
35	Proteolytic cleavage of proBDNF into mature BDNF in the basolateral amygdala is necessary for defeat-induced social avoidance. Learning and Memory, 2016, 23, 156-160.	1.3	16
36	Stress and Fear Extinction. Neuropsychopharmacology, 2016, 41, 58-79.	5.4	292

#	Article	IF	CITATIONS
37	Reversible Inactivation of the Bed Nucleus of the Stria Terminalis Prevents Reinstatement But Not Renewal of Extinguished Fear. ENeuro, 2015, 2, ENEURO.0037-15.2015.	1.9	29
38	Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats. Frontiers in Behavioral Neuroscience, 2015, 9, 205.	2.0	28
39	The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Frontiers in Behavioral Neuroscience, 2015, 9, 298.	2.0	408
40	Prefrontal-Hippocampal Interactions in Memory and Emotion. Frontiers in Systems Neuroscience, 2015, 9, 170.	2.5	231
41	Relapse of extinguished fear after exposure to a dangerous context is mitigated by testing in a safe context. Learning and Memory, 2015, 22, 170-178.	1.3	6
42	Fear renewal preferentially activates ventral hippocampal neurons projecting to both amygdala and prefrontal cortex in rats. Scientific Reports, 2015, 5, 8388.	3.3	109
43	Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3729-37.	7.1	88
44	Out with the old and in with the new: Synaptic mechanisms of extinction in the amygdala. Brain Research, 2015, 1621, 231-238.	2.2	44
45	Animal Models of Fear Relapse. ILAR Journal, 2014, 55, 246-258.	1.8	73
46	Nature and causes of the immediate extinction deficit: A brief review. Neurobiology of Learning and Memory, 2014, 113, 19-24.	1.9	78
47	Can fear extinction be enhanced? A review of pharmacological and behavioral findings. Brain Research Bulletin, 2014, 105, 46-60.	3.0	134
48	Fear of the unexpected: Hippocampus mediates novelty-induced return of extinguished fear in rats. Neurobiology of Learning and Memory, 2014, 108, 88-95.	1.9	34
49	The contextual brain: implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience, 2013, 14, 417-428.	10.2	1,262
50	Ensemble coding of context-dependent fear memory in the amygdala. Frontiers in Behavioral Neuroscience, 2013, 7, 199.	2.0	40
51	Single prolonged stress disrupts retention of extinguished fear in rats. Learning and Memory, 2012, 19, 43-49.	1.3	181
52	Neural and cellular mechanisms of fear and extinction memory formation. Neuroscience and Biobehavioral Reviews, 2012, 36, 1773-1802.	6.1	365
53	Functional anatomy of neural circuits regulating fear and extinction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17093-17098.	7.1	162
54	Seeking a Spotless Mind: Extinction, Deconsolidation, and Erasure of Fear Memory. Neuron, 2011, 70, 830-845.	8.1	260

#	Article	IF	CITATIONS
55	The bed nucleus of the stria terminalis is required for the expression of contextual but not auditory freezing in rats with basolateral amygdala lesions. Neurobiology of Learning and Memory, 2011, 95, 199-205.	1.9	60
56	Medial prefrontal cortex activation facilitates re-extinction of fear in rats. Learning and Memory, 2011, 18, 221-225.	1.3	51
57	Hippocampal and Prefrontal Projections to the Basal Amygdala Mediate Contextual Regulation of Fear after Extinction. Journal of Neuroscience, 2011, 31, 17269-17277.	3.6	270
58	Strain difference in the effect of infralimbic cortex lesions on fear extinction in rats Behavioral Neuroscience, 2010, 124, 391-397.	1.2	49
59	Social modulation of learning in rats. Learning and Memory, 2010, 17, 35-42.	1.3	141
60	Single-Unit Activity in the Medial Prefrontal Cortex during Immediate and Delayed Extinction of Fear in Rats. PLoS ONE, 2010, 5, e11971.	2.5	96
61	Early extinction after fear conditioning yields a context-independent and short-term suppression of conditional freezing in rats. Learning and Memory, 2009, 16, 62-68.	1.3	54
62	Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learning and Memory, 2009, 16, 486-493.	1.3	224
63	Fear Extinction in Rodents. Current Protocols in Neuroscience, 2009, 47, Unit8.23.	2.6	46
64	Pavlovian fear conditioning as a behavioral assay for hippocampus and amygdala function: cautions and caveats. European Journal of Neuroscience, 2008, 28, 1661-1666.	2.6	214
65	Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear. Learning and Memory, 2008, 15, 244-251.	1.3	171
66	Hippocampal regulation of context-dependent neuronal activity in the lateral amygdala. Learning and Memory, 2007, 14, 318-324.	1.3	113
67	Hippocampal involvement in contextual modulation of fear extinction. Hippocampus, 2007, 17, 749-758.	1.9	248
68	Contextual and Temporal Modulation of Extinction: Behavioral and Biological Mechanisms. Biological Psychiatry, 2006, 60, 352-360.	1.3	597
69	Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus, 2006, 16, 174-182.	1.9	180
70	Recent fear is resistant to extinction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18020-18025.	7.1	167
71	Electrolytic lesions of the medial prefrontal cortex do not interfere with long-term memory of extinction of conditioned fear. Learning and Memory, 2006, 13, 14-17.	1.3	67
72	Electrolytic lesions of the dorsal hippocampus disrupt renewal of conditional fear after extinction. Learning and Memory, 2005, 12, 270-276.	1.3	158

#	Article	IF	CITATIONS
73	Hippocampal Inactivation Disrupts the Acquisition and Contextual Encoding of Fear Extinction. Journal of Neuroscience, 2005, 25, 8978-8987.	3.6	345
74	Building and Burying Fear Memories in the Brain. Neuroscientist, 2005, 11, 89-99.	3.5	133
75	Synaptic Mechanisms of Associative Memory in the Amygdala. Neuron, 2005, 47, 783-786.	8.1	292
76	Factors Regulating the Effects of Hippocampal Inactivation on Renewal of Conditional Fear After Extinction. Learning and Memory, 2004, 11, 598-603.	1.3	159
77	Neuronal signalling of fear memory. Nature Reviews Neuroscience, 2004, 5, 844-852.	10.2	1,266
78	Hippocampus and Pavlovian Fear Conditioning in Rats: Muscimol Infusions Into the Ventral, but Not Dorsal, Hippocampus Impair the Acquisition of Conditional Freezing to an Auditory Conditional Stimulus Behavioral Neuroscience, 2004, 118, 97-110.	1.2	230
79	Protein synthesis in the amygdala, but not the auditory thalamus, is required for consolidation of Pavlovian fear conditioning in rats. European Journal of Neuroscience, 2003, 18, 3080-3088.	2.6	91
80	Pretraining NMDA receptor blockade in the basolateral complex, but not the central nucleus, of the amygdala prevents savings of the conditional fear Behavioral Neuroscience, 2003, 117, 738-750.	1.2	105
81	Context-Dependent Neuronal Activity in the Lateral Amygdala Represents Fear Memories after Extinction. Journal of Neuroscience, 2003, 23, 8410-8416.	3.6	156
82	Neurobiology of Pavlovian Fear Conditioning. Annual Review of Neuroscience, 2001, 24, 897-931.	10.7	1,513
83	ls There Savings for Pavlovian Fear Conditioning after Neurotoxic Basolateral Amygdala Lesions in Rats?. Neurobiology of Learning and Memory, 2001, 76, 268-283.	1.9	57
84	Hippocampal Inactivation Disrupts Contextual Retrieval of Fear Memory after Extinction. Journal of Neuroscience, 2001, 21, 1720-1726.	3.6	393
85	Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats11Published on the World Wide Web on 1 December 2000 Brain Research, 2001, 888, 356-365.	2.2	202
86	Neurotoxic Basolateral Amygdala Lesions Impair Learning and Memory But Not the Performance of Conditional Fear in Rats. Journal of Neuroscience, 1999, 19, 8696-8703.	3.6	237
87	Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends in Neurosciences, 1999, 22, 561-567.	8.6	382
88	Temporally Graded Retrograde Amnesia of Contextual Fear after Hippocampal Damage in Rats: Within-Subjects Examination. Journal of Neuroscience, 1999, 19, 1106-1114.	3.6	572
89	The startled seahorse: is the hippocampus necessary for contextual fear conditioning?. Trends in Cognitive Sciences, 1998, 2, 39-42.	7.8	104
90	Overtraining Does Not Mitigate Contextual Fear Conditioning Deficits Produced by Neurotoxic Lesions of the Basolateral Amygdala. Journal of Neuroscience, 1998, 18, 3088-3097.	3.6	174

#	Article	IF	CITATIONS
91	Electrolytic Lesions of the Fimbria/Fornix, Dorsal Hippocampus, or Entorhinal Cortex Produce Anterograde Deficits in Contextual Fear Conditioning in Rats. Neurobiology of Learning and Memory, 1997, 67, 142-149.	1.9	296
92	Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behavioural Brain Research, 1997, 88, 261-274.	2.2	669
93	Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: Absence of a temporal gradient Behavioral Neuroscience, 1996, 110, 718-726.	1.2	263
94	N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats Behavioral Neuroscience, 1996, 110, 1365-1374.	1.2	352
95	Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Research, 1994, 661, 25-34.	2.2	398
96	Neural Oscillations in Aversively Motivated Behavior. Frontiers in Behavioral Neuroscience, 0, 16, .	2.0	12