Riitta Julkunen-Tiitto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7866275/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Genetic modification of the flavonoid pathway alters growth and reveals flexible responses to enhanced UVB – Role of foliar condensed tannins. Plant-Environment Interactions, 2021, 2, 1-15.	1.5	Ο
2	Phytochemical Shift from Condensed Tannins to Flavonoids in Transgenic Betula pendula Decreases Consumption and Growth but Improves Growth Efficiency of Epirrita autumnata Larvae. Journal of Chemical Ecology, 2020, 46, 217-231.	1.8	6
3	Dryâ€air drying at room temperature – a practical preâ€treatment method of tree leaves for quantitative analyses of phenolics?. Phytochemical Analysis, 2018, 29, 493-499.	2.4	9
4	Growth and defence of aspen (<i>Populus tremula</i>) after three seasons under elevated temperature and ultraviolet-B radiation. Canadian Journal of Forest Research, 2018, 48, 629-641.	1.7	11
5	Climate Change Effects on Secondary Compounds of Forest Trees in the Northern Hemisphere. Frontiers in Plant Science, 2018, 9, 1445.	3.6	135
6	Does the Growth Differentiation Balance Hypothesis Explain Allocation to Secondary Metabolites in Combretum apiculatum , an African Savanna Woody Species?. Journal of Chemical Ecology, 2017, 43, 153-163.	1.8	20
7	Responses of growth and leaf phenolics in European aspen (<i>Populus tremula</i>) to climate change during juvenile phase change. Canadian Journal of Forest Research, 2017, 47, 1350-1363.	1.7	23
8	High daytime temperature delays autumnal bud formation inPopulus tremulaunder field conditions. Tree Physiology, 2016, 37, 71-81.	3.1	9
9	The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen. Science of the Total Environment, 2016, 547, 39-47.	8.0	27
10	Genetic specificity of a plant–insect food web: Implications for linking genetic variation to network complexity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2128-2133.	7.1	63
11	Stilbene impregnation retards brown-rot decay of Scots pine sapwood. Holzforschung, 2016, 70, 261-266.	1.9	26
12	Insect herbivores drive the loss of unique chemical defense in willows. Entomologia Experimentalis Et Applicata, 2015, 156, 88-98.	1.4	13
13	To each its own: differential response of specialist and generalist herbivores to plant defence in willows. Journal of Animal Ecology, 2015, 84, 1123-1132.	2.8	53
14	Multiple plant traits shape the genetic basis of herbivore community assembly. Functional Ecology, 2015, 29, 995-1006.	3.6	74
15	Decreased anthocyanidin reductase expression strongly decreases silver birch (<i>Betula pendula</i>) growth and alters accumulation of phenolics. Physiologia Plantarum, 2015, 155, 384-399.	5.2	6
16	The vegetative buds of Salix myrsinifolia are responsive to elevated UV-B and temperature. Plant Physiology and Biochemistry, 2015, 93, 66-73.	5.8	13
17	Interactive effects of supplemental UV-B and temperature in European aspen seedlings: Implications for growth, leaf traits, phenolic defense and associated organisms. Plant Physiology and Biochemistry, 2015, 93, 84-93.	5.8	56
18	The role of UV-B radiation in plant sexual reproduction. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 243-254.	2.7	35

RIITTA JULKUNEN-TIITTO

#	Article	IF	CITATIONS
19	Host Genetics and Environment Drive Divergent Responses of Two Resource Sharing Gall-Formers on Norway Spruce: A Common Garden Analysis. PLoS ONE, 2015, 10, e0142257.	2.5	10
20	Phenolic Compounds and Expression of 4CL Genes in Silver Birch Clones and Pt4CL1a Lines. PLoS ONE, 2014, 9, e114434.	2.5	14
21	Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores. Frontiers in Plant Science, 2014, 5, 478.	3.6	53
22	Combined effect of elevated <scp>UVB</scp> , elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (<i>Picea abies</i>) seedlings. Global Change Biology, 2014, 20, 2252-2260.	9.5	55
23	Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories. Tree Physiology, 2014, 34, 471-487.	3.1	84
24	Quantitative metabolite profiling of edible onion species by NMR and HPLC–MS. Food Chemistry, 2014, 165, 499-505.	8.2	37
25	Long-term effects of boron and copper on phenolics and monoterpenes in Scots pine (Pinus sylvestris) Tj ETQq1 🕻	. <u>9.7</u> 8431	4 rgBT /Over
26	Combination treatment of elevated UVB radiation, CO ₂ and temperature has little effect on silver birch (<i>Betula pendula</i>) growth and phytochemistry. Physiologia Plantarum, 2013, 149, 499-514.	5.2	41
27	Blue Mood for Superfood. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	22
28	Combined enhancements of temperature and UVB influence growth and phenolics in clones of the sexually dimorphic <i>Salix myrsinifolia</i> . Physiologia Plantarum, 2012, 145, 551-564.	5.2	87
29	Estimating direct resistance in willows against a major insect pest, <i>Phratora vulgatissima</i> , by comparing life history traits. Entomologia Experimentalis Et Applicata, 2012, 144, 93-100.	1.4	21
30	Leaf litter from insectâ€resistant transgenic trees causes changes in aquatic insect community composition. Journal of Applied Ecology, 2011, 48, 1472-1479.	4.0	36
31	Darkâ€leaved willow (<i>Salix myrsinifolia)</i> is resistant to threeâ€factor (elevated CO ₂ ,) Tj ETQq	1 <u>1 0</u> .7843 7.3	814 rgBT /O
32	Leaf ontogeny interacts with Bt modification to affect innate resistance in GM aspens. Chemoecology, 2011, 21, 161-169.	1.1	15
33	Preference-performance relationship in the gall midge Rabdophaga rosaria: insights from a common-garden experiment with nine willow clones. Ecological Entomology, 2011, 36, 200-211.	2.2	13
34	Mother really knows best: host choice of adult phytophagous insect females reflects a within-host variation in suitability as larval food. Chemoecology, 2010, 20, 35-42.	1.1	22
35	Herbivores and variation in the composition of specific phenolics of boreal coniferous trees: a search for patterns. Chemoecology, 2010, 20, 229-242.	1.1	14
36	Can Leaf Litter from Genetically Modified Trees Affect Aquatic Ecosystems?. Ecosystems, 2010, 13, 1049-1059.	3.4	22

RIITTA JULKUNEN-TIITTO

#	Article	lF	CITATIONS
37	Do elevated atmospheric CO ₂ and O ₃ affect food quality and performance of folivorous insects on silver birch?. Global Change Biology, 2010, 16, 918-935.	9.5	25
38	Assessment of UV Biological Spectral Weighting Functions for Phenolic Metabolites and Growth Responses in Silver Birch Seedlings. Photochemistry and Photobiology, 2009, 85, 1346-1355.	2.5	39
39	Carotenoid-based colour polyphenism in a moth species: search for fitness correlates. Entomologia Experimentalis Et Applicata, 2007, 124, 269-277.	1.4	26
40	Effects of ultraviolet (UV) exclusion on the seasonal concentration of photosynthetic and UV-screening pigments in Scots pine needles. Global Change Biology, 2007, 13, 252-265.	9.5	26
41	Phenolic compounds in Norway spruce as affected by boron nutrition at the end of the growing season. Plant and Soil, 2007, 292, 13-23.	3.7	24
42	Effects of elevated CO2 and O3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant and Soil, 2007, 292, 25-43.	3.7	43
43	Effects of elevated carbon dioxide and ozone on aphid oviposition preference and birch bud exudate phenolics. Global Change Biology, 2006, 12, 1670-1679.	9.5	40
44	UV-B induces usnic acid in reindeer lichens. Lichenologist, 2006, 38, 477-485.	0.8	56
45	Responses of Strawberry (Fragaria×ananassa) to Supplemental UV-B Radiation and Selenium Under Field Conditions. Plant and Soil, 2006, 282, 27-39.	3.7	20
46	Phenolic compounds in seedlings of Betula pubescens and B. pendula are affected by enhanced UVB radiation and different nitrogen regimens during early ontogeny. Global Change Biology, 2005, 11, 1180-1194.	9.5	46
47	Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biology, 2005, 11, 1305-1324.	9.5	96
48	Clone-specific responses in leaf phenolics of willows exposed to enhanced UVB radiation and drought stress. Global Change Biology, 2005, 11, 1655-1663.	9.5	44
49	Growth and defense in deciduous trees and shrubs under UV-B. Environmental Pollution, 2005, 137, 404-414.	7.5	75
50	Elevated CO2 alters birch resistance to Lagomorpha herbivores. Global Change Biology, 2004, 10, 1402-1413.	9.5	37
51	Boron mobility in deciduous forest trees in relation to their polyols. New Phytologist, 2004, 163, 333-339.	7.3	36
52	Willow genotype, but not drought treatment, affects foliar phenolic concentrations and leaf-beetle resistance. Entomologia Experimentalis Et Applicata, 2004, 113, 1-14.	1.4	64
53	In vitro degradation of willow salicylates. Journal of Chemical Ecology, 2003, 29, 1083-1097.	1.8	48
54	Trade-off between synthesis of salicylates and growth of micropropagated Salix pentandra. Journal of Chemical Ecology, 2003, 29, 1565-1588.	1.8	50

#	Article	IF	CITATIONS
55	Costs of herbivore resistance in clonal saplings of Betula pendula. Oecologia, 2002, 133, 364-371.	2.0	30

$_{56}$ Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 702

57	The effect of elevated CO2 and temperature on the secondary chemistry of Betula pendula seedlings. Trees - Structure and Function, 2001, 15, 378-384.	1.9	89
58	The effects of long-term elevated UV-B on the growth and phenolics of field-grown silver birch (Betula pendula). Global Change Biology, 2001, 7, 839-848.	9.5	94
59	Environmental control and intersite variations of phenolics in Betula nana in tundra ecosystems. New Phytologist, 2001, 151, 227-236.	7.3	66
60	Quantitative changes in secondary metabolites of dark-leaved willow (Salix myrsinifolia) exposed to enhanced ultraviolet-B radiation. Physiologia Plantarum, 2001, 113, 541-547.	5.2	66
61	Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. , 2001, 27, 779-789.		171
62	Inhibition of Î ² -Glucosidase and Esterase by Tannins from Betula, Salix, and Pinus Species. Journal of Chemical Ecology, 2000, 26, 1151-1165.	1.8	44
63	Variation in Phenolic Compounds within a Birch (Betula pendula) Population. Journal of Chemical Ecology, 2000, 26, 1609-1622.	1.8	92
64	Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure. Physiologia Plantarum, 2000, 109, 260-267.	5.2	82
65	HERBIVORE RESISTANCE INBETULA PENDULA: EFFECT OF FERTILIZATION, DEFOLIATION, AND PLANT GENOTYPE. Ecology, 2000, 81, 49-65.	3.2	113
66	Leaf phenolics of three willow clones differing in resistance to Melampsora rust infection. Physiologia Plantarum, 1999, 105, 662-669.	5.2	29
67	Title is missing!. Journal of Chemical Ecology, 1999, 25, 943-953.	1.8	73
68	TRADE-OFFS IN PHENOLIC METABOLISM OF SILVER BIRCH: EFFECTS OF FERTILIZATION, DEFOLIATION, AND GENOTYPE. Ecology, 1999, 80, 1970-1986.	3.2	118
69	HOST PREFERENCE AND LARVAL PERFORMANCE OF THE SALICYLATE-USING LEAF BEETLEPHRATORA VITELLINAE. Ecology, 1998, 79, 618-631.	3.2	75
70	Effect of different nitrogen nutrients on the viability, protein synthesis and tannin production of Scots pine callus. Physiologia Plantarum, 1997, 100, 982-988.	5.2	12
71	The effect of u.vB radiation on u.vabsorbing secondary metabolites in birch seedlings grown under simulated forest soil conditions. New Phytologist, 1997, 137, 617-621.	7.3	73
72	Effect of Sample Preparation Method on Birch (Betula pendula Roth) Leaf Phenolics. Journal of Agricultural and Food Chemistry, 1996, 44, 2724-2727.	5.2	61

#	Article	IF	CITATIONS
73	Does nitrogen fertilization have an impact on the trade-off between willow growth and defensive secondary metabolism?. Trees - Structure and Function, 1995, 9, 235.	1.9	59
74	HOST PREFERENCE AND ALLOZYME DIFFERENTIATION IN SHOOT GALLING SAWFLY, EUURA ATRA. Evolution; International Journal of Organic Evolution, 1993, 47, 300-308.	2.3	49
75	Carbon-nutrient balance hypothesis in within-species phytochemical variation ofSalix lasiolepis. Journal of Chemical Ecology, 1989, 15, 1117-1131.	1.8	97