Daniel R Papaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7865748/publications.pdf Version: 2024-02-01

43

#	Article	IF	CITATIONS
1	Sex differences in the foraging behavior of a generalist hawkmoth. Insect Science, 2022, 29, 304-314.	3.0	6
2	Long horns protect Hestina japonica butterfly larvae from their natural enemies. Scientific Reports, 2022, 12, 2835.	3.3	4
3	Why study plasticity in multiple traits? New hypotheses for how phenotypically plastic traits interact during development and selection. Evolution; International Journal of Organic Evolution, 2022, 76, 858-869.	2.3	14
4	Nesting biology of <i>Centris</i> (<i>Paracentris</i>) <i>burgdorfi</i> (Apidae: Centridini). Journal of Apicultural Research, 2021, 60, 817-827.	1.5	2
5	Comparison of colorâ€learning rates among eight species of three insect orders (Hymenoptera, Diptera,) Tj ETQo	1 1 0.784 1.5	ŀ314 rgBT /○
6	The Size of it: Scant Evidence That Flower Size Variation Affects Deception in Intersexual Floral Mimicry. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	1
7	Sensory bias and signal detection trade-offs maintain intersexual floral mimicry. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190469.	4.0	6
8	Learning of bimodal vs. unimodal signals in restrained bumble bees. Journal of Experimental Biology, 2020, 223, .	1.7	13
9	Sonicating bees demonstrate flexible pollen extraction without instrumental learning. Environmental Epigenetics, 2019, 65, 425-436.	1.8	24
10	Sex differences in pollinator behavior: Patterns across species and consequences for the mutualism. Journal of Animal Ecology, 2019, 88, 971-985.	2.8	25
11	Mimicry in viceroy butterflies is dependent on abundance of the model queen butterfly. Communications Biology, 2019, 2, 68.	4.4	14
12	Linking components of complex signals to morphological part: the role of anther and corolla in the complex floral display. Animal Behaviour, 2018, 135, 223-236.	1.9	12
13	Molecular phylogeny, ecology and multispecies aggregation behaviour of bombardier beetles in Arizona. PLoS ONE, 2018, 13, e0205192.	2.5	10
14	Brawls Bring Buzz: Male Size Influences Competition and Courtship in Diadasia rinconis (Hymenoptera:) Tj ETQq(0 0 0 rgBT 1.5 rgBT	/Overlock 10
15	Colour plasticity alters thermoregulatory behaviour in Battus philenor caterpillars by modifying the cue received. Animal Behaviour, 2018, 140, 93-98.	1.9	2
16	Division of labor of anthers in heterantherous plants: flexibility of bee pollen collection behavior may serve to keep plants honest. Arthropod-Plant Interactions, 2017, 11, 307-315.	1.1	26
17	Sampling and tracking a changing environment: persistence and reward in the foraging decisions of bumblebees. Interface Focus, 2017, 7, 20160149.	3.0	21

¹⁸How a generalist bee achieves high efficiency of pollen collection on diverse floral resources.2.2Behavioral Ecology, 2017, 28, 991-1003.2.2

#	Article	IF	CITATIONS
19	Patterns of pollen and nectar foraging specialization by bumblebees over multiple timescales using RFID. Scientific Reports, 2017, 7, 42448.	3.3	46
20	Why Have Multiple Plastic Responses? Interactions between Color Change and Heat Avoidance Behavior in <i>Battus philenor</i> Larvae. American Naturalist, 2017, 189, 657-666.	2.1	8
21	Multiple rewards have asymmetric effects on learning in bumblebees. Animal Behaviour, 2017, 126, 123-133.	1.9	8
22	White flowers finish last: pollen-foraging bumble bees show biased learning in a floral color polymorphism. Evolutionary Ecology, 2017, 31, 173-191.	1.2	6
23	Foraging Bumble Bees Weigh the Reliability of Personal and Social Information. Current Biology, 2016, 26, 1195-1199.	3.9	54
24	Concealed floral rewards and the role of experience in floral sonication by bees. Animal Behaviour, 2016, 120, 83-91.	1.9	39
25	Effects of sodium puddling on male mating success, courtship and flight in a swallowtail butterfly. Animal Behaviour, 2016, 114, 203-210.	1.9	17
26	Nutritional complexity and the structure of bee foraging bouts. Behavioral Ecology, 2016, 27, 903-911.	2.2	18
27	Bees learn preferences for plant species that offer only pollen as a reward. Behavioral Ecology, 2016, 27, 731-740.	2.2	29
28	Bees remember flowers for more than one reason: pollen mediates associative learning. Animal Behaviour, 2016, 111, 93-100.	1.9	62
29	Long Frontal Projections Help Battus philenor (Lepidoptera: Papilionidae) Larvae Find Host Plants. PLoS ONE, 2015, 10, e0131596.	2.5	4
30	Effects of developmental change in body size on ectotherm body temperature and behavioral thermoregulation: caterpillars in a heat-stressed environment. Oecologia, 2015, 177, 171-179.	2.0	24
31	The value of information in floral cues: bumblebee learning of floral size cues. Behavioral Ecology, 2015, 26, 1335-1344.	2.2	8
32	Big maggots dig deeper: size-dependent larval dispersal in flies. Oecologia, 2015, 179, 55-62.	2.0	7
33	Colour learning when foraging for nectar and pollen: bees learn two colours at once. Biology Letters, 2015, 11, 20150628.	2.3	39
34	Plasticity in Learning Causes Immediate and Trans-Generational Changes in Allocation of Resources. Integrative and Comparative Biology, 2013, 53, 329-339.	2.0	15
35	Floral Nectar Guide Patterns Discourage Nectar Robbing by Bumble Bees. PLoS ONE, 2013, 8, e55914.	2.5	34
36	Plasticity of the Worker Bumblebee Brain in Relation to Age and Rearing Environment. Brain, Behavior and Evolution, 2013, 82, 250-261.	1.7	37

#	Article	IF	CITATIONS
37	Floral signal complexity as a possible adaptation to environmental variability: a test using nectar-foraging bumblebees, Bombus impatiens. Animal Behaviour, 2012, 83, 905-913.	1.9	41
38	Aggregative Behavior is Not Explained by an Allee Effect in the Walnut Infesting Fly, Rhagoletis juglandis. Journal of Insect Behavior, 2012, 25, 166-182.	0.7	4
39	Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. Journal of Experimental Biology, 2011, 214, 113-121.	1.7	153
40	Why are floral signals complex? An outline of functional hypotheses. , 2011, , 279-300.		18
41	â€~X' marks the spot: The possible benefits of nectar guides to bees and plants. Functional Ecology, 2011, 25, 1293-1301.	3.6	111
42	Bioluminescent aposematism in millipedes. Current Biology, 2011, 21, R680-R681.	3.9	38
43	Forget-me-not: Complex floral displays, inter-signal interactions, and pollinator cognition. Environmental Epigenetics, 2011, 57, 215-224.	1.8	90
44	Reproductive tradeoffs of learning in a butterfly. Behavioral Ecology, 2011, 22, 291-302.	2.2	80
45	Resource quality or competition: why increase resource acceptance in the presence of conspecifics?. Behavioral Ecology, 2011, 22, 730-737.	2.2	20
46	Resource allocation to testes in walnut flies and implications for reproductive strategy. Journal of Insect Physiology, 2010, 56, 1523-1529.	2.0	5
47	Big Genomes Facilitate the Comparative Identification of Regulatory Elements. PLoS ONE, 2009, 4, e4688.	2.5	41
48	Brain Size: A Global or Induced Cost of Learning?. Brain, Behavior and Evolution, 2009, 73, 111-128.	1.7	87
49	Patterns of Phenotypic Plasticity in Common and Rare Environments: A Study of Host Use and Color Learning in the Cabbage White Butterfly <i>Pieris rapae</i> . American Naturalist, 2009, 173, 615-631.	2.1	62
50	Multimodal signals enhance decision making in foraging bumble-bees. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 797-802.	2.6	146
51	Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behavioral Ecology, 2007, 18, 41-46.	2.2	147
52	Memory flies sooner from flies that learn faster. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13539-13540.	7.1	6
53	Extreme weather change and the dynamics of oviposition behavior in the pipevine swallowtail, Battus philenor. Oecologia, 2007, 152, 365-375.	2.0	14
54	Flower Choice and Learning in Foraging Bumblebees: Effects of Variation in Nectar Volume and Concentration Ethology, 2006, 112, 278-285.	1.1	182

#	Article	IF	CITATIONS
55	Learning signals within sensory environments: Does host cue learning in butterflies depend on background?. Animal Biology, 2006, 56, 173-192.	1.0	9
56	PEAK SHIFT DISCRIMINATION LEARNING AS A MECHANISM OF SIGNAL EVOLUTION. Evolution; International Journal of Organic Evolution, 2005, 59, 1300-1305.	2.3	113
57	Complex signal function: developing a framework of testable hypotheses. Behavioral Ecology and Sociobiology, 2005, 57, 197-214.	1.4	819
58	A within-species warning function for an aposematic signal. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2519-2523.	2.6	19
59	Learning in two contexts: the effects of interference and body size in bumblebees. Journal of Experimental Biology, 2005, 208, 2045-2053.	1.7	78
60	Flower choice copying in bumblebees. Biology Letters, 2005, 1, 504-507.	2.3	128
61	Host-marking behaviour as a quantitative signal of competition in the walnut fly Rhagoletis juglandis. Ecological Entomology, 2004, 29, 336-344.	2.2	22
62	In Praise of a Good Colleague: Ronald John Prokopy. Journal of Insect Behavior, 2004, 17, 569-577.	0.7	0
63	Superparasitism of larval hosts by the walnut fly, Rhagoletis juglandis, and its implications for female and offspring performance. Oecologia, 2004, 141, 460-467.	2.0	31
64	Colour learning in two behavioural contexts: how much can a butterfly keep in mind?. Animal Behaviour, 2003, 65, 425-434.	1.9	89
65	Effect of host stimuli on ovariole development in the walnut fly, <i>Rhagoletis juglandis</i> (Diptera,) Tj ETQq1	1 0,78431 1.5	4 rgBT /Over
66	Host marking behavior in phytophagous insects and parasitoids. Entomologia Experimentalis Et Applicata, 2001, 99, 273-293.	1.4	179
67	Effects of age, diet, female density, and the host resource on egg load in Anastrepha ludens and Anastrepha obliqua (Diptera: Tephritidae). Journal of Insect Physiology, 2001, 47, 975-988.	2.0	95
68	Acoustic Component and Social Context of the Wing Display of the Walnut Fly Rhagoletis juglandis. Journal of Insect Behavior, 2000, 13, 511-524.	0.7	9
69	Host Utilization by the Walnut Fly,Rhagoletis juglandis(Diptera: Tephritidae). Environmental Entomology, 2000, 29, 994-1001.	1.4	13
70	Ovarian Dynamics and Host Use. Annual Review of Entomology, 2000, 45, 423-448.	11.8	275
71	Role of host fruit color in the behavior of the walnut fly Rhagoletis juglandis. Entomologia Experimentalis Et Applicata, 1999, 93, 247-256.	1.4	18
72	Resource presence and operational sex ratio as determinants of copulation duration in the flyRhagoletis juglandis. Animal Behaviour, 1999, 57, 1063-1069.	1.9	11

#	Article	IF	CITATIONS
73	Asymmetries in Physiological State as a Possible Cause of Resident Advantage in Contests. Behaviour, 1998, 135, 1013-1030.	0.8	24
74	Role of colour and shape stimuli in host-enhanced oogenesis in the walnut fly, Rhagoletis juglandis. Physiological Entomology, 1998, 23, 97-104.	1.5	37
75	Patterns of Egg Load in the Walnut Fly Rhagoletis juglandis (Diptera: Tephritidae) in Nature and Their Possible Significance for Distribution of Sexes. Annals of the Entomological Society of America, 1996, 89, 875-882.	2.5	15
76	Operational sex ratio versus gender density as determinants of copulation duration in the walnut fly, Rhagoletis juglandis (Diptera: Tephritidae). Behavioral Ecology and Sociobiology, 1996, 39, 171-180.	1.4	69
77	Functional shifts in the use of parasitized hosts by a tephritid fly: the role of host quality. Behavioral Ecology, 1996, 7, 235-242.	2.2	38
78	Unrewarding experiences and their effect on foraging in the parasitic waspLeptopilina heterotoma (Hymenoptera: Eucoilidae). Journal of Insect Behavior, 1994, 7, 465-481.	0.7	61
79	Oviposition site guarding by male walnut flies and its possible consequences for mating success. Behavioral Ecology and Sociobiology, 1994, 34, 187-195.	1.4	44
80	Oviposition site guarding by male walnut flies and its possible consequences for mating success. Behavioral Ecology and Sociobiology, 1994, 34, 187-195.	1.4	3
81	How well can relative specialistRhagoletis flies learn to discriminate fruit for oviposition?. Journal of Insect Behavior, 1993, 6, 167-176.	0.7	25
82	Effects of experience on parasitoid movement in odour plumes. Physiological Entomology, 1992, 17, 90-96.	1.5	42
83	d-(+)-Pinitol, an oviposition stimulant for the pipevine swallowtail butterfly,Battus philenor. Journal of Chemical Ecology, 1992, 18, 799-815.	1.8	34
84	Host-marking pheromone and use of previously established oviposition sites by the mediterranean fruit fly (Diptera: Tephritidae). Journal of Insect Behavior, 1992, 5, 583-598.	0.7	46
85	Fruit size and clutch size in wild <i>Ceratitis capitata</i> . Entomologia Experimentalis Et Applicata, 1990, 54, 195-198.	1.4	7
86	Odor learning and foraging success in the parasitoid,Leptopilina heterotoma. Journal of Chemical Ecology, 1990, 16, 3137-3150.	1.8	146
87	Use of fruit wounds in oviposition by Mediterranean fruit flies. Entomologia Experimentalis Et Applicata, 1989, 53, 203-209.	1.4	52
88	Cross-induction of fruit acceptance by the medflyCeratitis capitata: The role of fruit size and chemistry. Journal of Insect Behavior, 1989, 2, 241-254.	0.7	28
89	Learning of apple fruit biotypes by apple maggot flies. Journal of Insect Behavior, 1988, 1, 67-74.	0.7	36
90	The effect of prior adult experience on components of habitat preference in the apple maggot fly (Rhagoletis pomonella). Oecologia, 1988, 76, 538-543.	2.0	48

#	Article	IF	CITATIONS
91	Components of Conspecific Host Discrimination Behavior in the Butterfly Battus Philenor. Ecology, 1987, 68, 245-253.	3.2	40
92	Intraâ€ŧree foraging behavior of <i>Ceratitis capitata</i> flies in relation to host fruit density and quality. Entomologia Experimentalis Et Applicata, 1987, 45, 251-258.	1.4	35
93	Differences in learning between wild and laboratory Ceratitis capitata flies. Entomologia Experimentalis Et Applicata, 1987, 45, 65-72.	1.4	24
94	On the nature of learning in oviposition site acceptance by apple maggot flies. Animal Behaviour, 1986, 34, 98-107.	1.9	58
95	Conditioning of leaf-shape discrimination by chemical cues in the butterfly, Battus philenor. Animal Behaviour, 1986, 34, 1281-1288.	1.9	85
96	INTERPOPULATION DIFFERENCES IN HOST PREFERENCE AND THE EVOLUTION OF LEARNING IN THE BUTTERFLY, <i>BATTUS PHILENOR</i> . Evolution; International Journal of Organic Evolution, 1986, 40, 518-530.	2.3	63
97	Leaf buds, a factor in host selection by Battus philenor butterflies. Ecological Entomology, 1986, 11, 301-307.	2.2	9
98	Shifts in foraging behavior by a Battus philenor population: field evidence for switching by individual butterflies. Behavioral Ecology and Sociobiology, 1986, 19, 31-39.	1.4	33
99	Phytochemical basis of learning inRhagoletis pomonella and other herbivorous insects. Journal of Chemical Ecology, 1986, 12, 1125-1143.	1.8	86
100	Host plant selection by Battus philenor butterflies: Evidence for individual differences in foraging behaviour. Animal Behaviour, 1983, 31, 341-347.	1.9	40
101	Demographic Consequences of Descrimination among Conspecific Host Plants by Battus Philenor Butterflies. Ecology, 1983, 64, 1402-1410.	3.2	69
102	Artificial pollen dispensing flowers and feeders for bee behaviour experiments. Journal of Pollination Ecology, 0, 18, 13-22.	0.5	24