
Tongbiao Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7865292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human retinal pigment epithelial cells. Cell Proliferation, 2022, 55, e13153.	5.3	5
2	Requirements for humanâ€induced pluripotent stem cells. Cell Proliferation, 2022, 55, e13182.	5.3	5
3	Developing standards to support cell technology applications. Cell Proliferation, 2022, 55, e13210.	5.3	0
4	Human mesenchymal stem cells. Cell Proliferation, 2022, 55, e13141.	5.3	14
5	BNIP3 (BCL2 interacting protein 3) regulates pluripotency by modulating mitochondrial homeostasis via mitophagy. Cell Death and Disease, 2022, 13, 334.	6.3	15
6	Enhance anti-lung tumor efficacy of chimeric antigen receptor-T cells by ectopic expression of C–C motif chemokine receptor 6. Science Bulletin, 2021, 66, 803-812.	9.0	17
7	PINK1â€mediated mitophagy maintains pluripotency through optineurin. Cell Proliferation, 2021, 54, e13034.	5.3	15

8 Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock 10 Jf 50 462 Td (edition

9	Requirements for human cardiomyocytes. Cell Proliferation, 2021, , e13150.	5.3	3
10	Developing Standards to Support the Clinical Translation of Stem Cells. Stem Cells Translational Medicine, 2021, 10, S85-S95.	3.3	7
11	Requirments for primary human hepatocyte. Cell Proliferation, 2021, , e13147.	5.3	4
12	Requirements for human haematopoietic stem/progenitor cells. Cell Proliferation, 2021, , e13152.	5.3	3
13	Requirements for human embryonic stem cells. Cell Proliferation, 2020, 53, e12925.	5.3	10
14	General requirements for stem cells. Cell Proliferation, 2020, 53, e12926.	5.3	11
15	Cellular metabolism and homeostasis in pluripotency regulation. Protein and Cell, 2020, 11, 630-640.	11.0	13
16	Chimeric antigen receptor T (CAR-T) cells expanded with IL-7/IL-15 mediate superior antitumor effects. Protein and Cell, 2019, 10, 764-769.	11.0	73
17	USP8 maintains embryonic stem cell stemness via deubiquitination of EPG5. Nature Communications, 2019, 10, 1465.	12.8	35
18	The physiological roles of autophagy in the mammalian life cycle. Biological Reviews, 2019, 94, 503-516.	10.4	63

2

Τονςβιάο Ζηάο

#	Article	IF	CITATIONS
19	Autophagy in Normal Stem Cells and Specialized Cells. Advances in Experimental Medicine and Biology, 2019, 1206, 489-508.	1.6	2
20	Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency. Cell Death and Disease, 2018, 9, 38.	6.3	37
21	ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast. Stem Cell Research and Therapy, 2018, 9, 2.	5.5	15
22	Deciphering the history of monkey cloning. Chinese Science Bulletin, 2018, 63, 1758-1763.	0.7	0
23	High autophagic flux guards ESC identity through coordinating autophagy machinery gene program by FOXO1. Cell Death and Differentiation, 2017, 24, 1672-1680.	11.2	52
24	PIM2 regulates stemness through phosphorylation of 4E-BP1. Science Bulletin, 2017, 62, 679-685.	9.0	3
25	Reprogramming of Notch1-induced acute lymphoblastic leukemia cells into pluripotent stem cells in mice. Blood Cancer Journal, 2016, 6, e444-e444.	6.2	2
26	Single-cell sequencing delivers hematopoietic stem cell specification. Science Bulletin, 2016, 61, 1419-1421.	9.0	0
27	Treatment of multiple sclerosis by transplantation of neural stem cells derived from induced pluripotent stem cells. Science China Life Sciences, 2016, 59, 950-957.	4.9	40
28	ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy, 2016, 12, 2000-2008.	9.1	79
29	Tet3-Mediated DNA Demethylation Contributes to the Direct Conversion of Fibroblast to Functional Neuron. Cell Reports, 2016, 17, 2326-2339.	6.4	23
30	p18 inhibits reprogramming through inactivation of Cdk4/6. Scientific Reports, 2016, 6, 31085.	3.3	8
31	Genistein sensitizes sarcoma cells in vitro and in vivo by enhancing apoptosis and by inhibiting DSB repair pathways. Journal of Radiation Research, 2016, 57, 227-237.	1.6	13
32	Immunogenicity and functional evaluation of iPSC-derived organs for transplantation. Cell Discovery, 2015, 1, 15015.	6.7	12
33	mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. Journal of Molecular Cell Biology, 2015, 7, 62-72.	3.3	71
34	Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 353-359.	11.1	198
35	Understanding the roadmaps to induced pluripotency. Cell Death and Disease, 2014, 5, e1232-e1232.	6.3	25
36	Cells derived from iPSC can be immunogenic — Yes or No?. Protein and Cell, 2014, 5, 1-3.	11.0	51

Τονςβιάο Ζηάο

#	Article	IF	CITATIONS
37	Clinical Therapy Using iPSCs: Hopes and Challenges. Genomics, Proteomics and Bioinformatics, 2013, 11, 294-298.	6.9	41
38	Using Flow Cytometry to Compare the Dynamics of Photoreceptor Outer Segment Phagocytosis in iPS-Derived RPE Cells. , 2012, 53, 6282.		46
39	The genomic stability of induced pluripotent stem cells. Protein and Cell, 2012, 3, 271-277.	11.0	14
40	Immunogenicity of induced pluripotent stem cells. Nature, 2011, 474, 212-215.	27.8	1,305
41	p53 and stem cells: new developments and new concerns. Trends in Cell Biology, 2010, 20, 170-175.	7.9	138
42	Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13312-13317.	7.1	131
43	Granzyme H induces apoptosis of target tumor cells characterized by DNA fragmentation and Bid-dependent mitochondrial damage. Molecular Immunology, 2008, 45, 1044-1055.	2.2	54
44	Granzyme K degrades the redox/DNA repair enzyme Ape1 to trigger oxidative stress of target cells leading to cytotoxicity. Molecular Immunology, 2008, 45, 2225-2235.	2.2	55
45	Granzyme K Directly Processes Bid to Release Cytochrome c and Endonuclease G Leading to Mitochondria-dependent Cell Death. Journal of Biological Chemistry, 2007, 282, 12104-12111.	3.4	80
46	Granzyme K cleaves the nucleosome assembly protein SET to induce single-stranded DNA nicks of target cells. Cell Death and Differentiation, 2007, 14, 489-499.	11.2	84
47	Granzyme M Directly Cleaves Inhibitor of Caspase-Activated DNase (CAD) to Unleash CAD Leading to DNA Fragmentation. Journal of Immunology, 2006, 177, 1171-1178.	0.8	67
48	Cloning of hypoxia-inducible factor 1α cDNA from a high hypoxia tolerant mammal—plateau pika (Ochotona curzoniae). Biochemical and Biophysical Research Communications, 2004, 316, 565-572.	2.1	32