List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7864526/publications.pdf Version: 2024-02-01

VACED KIANI

#	Article	IF	CITATIONS
1	Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation. Composite Structures, 2011, 93, 3063-3071.	5.8	155
2	Buckling of pressurized functionally graded carbon nanotube reinforced conical shells. Composite Structures, 2015, 125, 586-595.	5.8	151
3	An exact solution for thermal buckling of annular FGM plates on an elastic medium. Composites Part B: Engineering, 2013, 45, 101-110.	12.0	146
4	Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells. Aerospace Science and Technology, 2015, 47, 42-53.	4.8	143
5	Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. Composite Structures, 2016, 142, 45-56.	5.8	139
6	Free vibration of FG-CNT reinforced composite skew plates. Aerospace Science and Technology, 2016, 58, 178-188.	4.8	119
7	Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. International Journal of Mechanical Sciences, 2013, 69, 10-20.	6.7	117
8	Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation. Computer Methods in Applied Mechanics and Engineering, 2018, 332, 86-101.	6.6	112
9	Thermal buckling of temperature dependent FG-CNT reinforced composite plates. Meccanica, 2016, 51, 2185-2201.	2.0	111
10	Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment. Composite Structures, 2015, 132, 35-43.	5.8	110
11	Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers. Computers and Mathematics With Applications, 2016, 72, 2433-2449.	2.7	110
12	NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates. Thin-Walled Structures, 2018, 125, 211-219.	5.3	110
13	Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Composites Part B: Engineering, 2019, 156, 128-137.	12.0	108
14	Thermal post-buckling of FG-CNT reinforced composite plates. Composite Structures, 2017, 159, 299-306.	5.8	102
15	Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation. Composites Part B: Engineering, 2018, 147, 169-177.	12.0	102
16	Thermal buckling analysis of functionally graded material beams. International Journal of Mechanics and Materials in Design, 2010, 6, 229-238.	3.0	101
17	Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation. Composite Structures, 2017, 180, 606-616.	5.8	99
18	Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method. Composites Part B: Engineering, 2016, 105, 176-187.	12.0	97

#	Article	IF	CITATIONS
19	Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation. Composite Structures, 2012, 94, 2474-2484.	5.8	93
20	Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements. Composite Structures, 2018, 186, 114-122.	5.8	89
21	Free vibration study of composite conical panels reinforced with FG-CNTs. Engineering Structures, 2018, 172, 472-482.	5.3	89
22	Thermal buckling of FG graphene platelet reinforced composite annular sector plates. Thin-Walled Structures, 2020, 148, 106589.	5.3	87
23	Vibration of thermo-electrically post-buckled rectangular functionally graded piezoelectric beams. Composite Structures, 2013, 98, 143-152.	5.8	83
24	Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading. Acta Mechanica, 2017, 228, 1303-1319.	2.1	82
25	Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. International Journal of Mechanical Sciences, 2014, 81, 137-148.	6.7	80
26	Free vibration of FG-CNT reinforced composite spherical shell panels using Gram-Schmidt shape functions. Composite Structures, 2017, 159, 368-381.	5.8	80
27	Free vibration of joined conical-conical shells. Thin-Walled Structures, 2017, 120, 446-457.	5.3	79
28	Analysis of FG-CNT reinforced composite conical panel subjected to moving load using Ritz method. Thin-Walled Structures, 2017, 119, 47-57.	5.3	79
29	Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. Acta Mechanica, 2016, 227, 1869-1884.	2.1	78
30	Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load. Thin-Walled Structures, 2017, 111, 48-57.	5.3	78
31	Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation. Acta Mechanica, 2012, 223, 1199-1218.	2.1	76
32	Free vibration of joined conical–cylindrical–conical shells. Acta Mechanica, 2018, 229, 2751-2764.	2.1	76
33	Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams. International Journal of Mechanics and Materials in Design, 2011, 7, 185-197.	3.0	75
34	Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method. Aerospace Science and Technology, 2018, 77, 388-398.	4.8	75
35	Large amplitude thermally induced vibrations of temperature dependent annular FGM plates. Composites Part B: Engineering, 2019, 163, 371-383.	12.0	74
36	Linear thermal buckling analysis of truncated hybrid FGM conical shells. Composites Part B: Engineering, 2013, 50, 265-272.	12.0	73

#	Article	IF	CITATIONS
37	Non-linear rapid heating of FGM beams. International Journal of Non-Linear Mechanics, 2014, 67, 74-84.	2.6	73
38	Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates. Journal of Thermal Stresses, 2017, 40, 1442-1460.	2.0	73
39	Thermal buckling and post-buckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation. Archive of Applied Mechanics, 2012, 82, 891-905.	2.2	70
40	Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets. Journal of Thermal Stresses, 2018, 41, 866-882.	2.0	67
41	Free vibration of FGM Lévy conical panels. Composite Structures, 2014, 116, 732-746.	5.8	64
42	Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. Journal of Thermal Stresses, 2016, 39, 1098-1110.	2.0	64
43	Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation. Composite Structures, 2021, 261, 113515.	5.8	64
44	Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets. Composite Structures, 2015, 134, 1004-1013.	5.8	63
45	Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports. Acta Mechanica, 2015, 226, 897-915.	2.1	63
46	Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams. Composites Part B: Engineering, 2019, 175, 107178.	12.0	59
47	Exact solution for nonlinear thermal stability of hybrid laminated composite Timoshenko beams reinforced with SMA fibers. Composite Structures, 2014, 108, 811-822.	5.8	58
48	Nonlinear thermal dynamic buckling of FGM beams. European Journal of Mechanics, A/Solids, 2015, 54, 232-242.	3.7	58
49	Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout. Beilstein Journal of Nanotechnology, 2016, 7, 511-523.	2.8	58
50	Free vibration of carbon nanotube reinforced composite plate on point Supports using Lagrangian multipliers. Meccanica, 2017, 52, 1353-1367.	2.0	58
51	Thermomechanical buckling oftemperature-dependent FGM beams. Latin American Journal of Solids and Structures, 2013, 10, 223-246.	1.0	58
52	Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three approximate analytical solutions). ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2011, 91, 581-593.	1.6	55
53	Dynamic analysis and active control of smart doubly curved FGM panels. Composite Structures, 2013, 102, 205-216.	5.8	55
54	A comprehensive study on stability of FGM plates. International Journal of Mechanical Sciences, 2013, 75, 134-144.	6.7	54

#	Article	IF	CITATIONS
55	Free vibration of FGM conical–spherical shells. Thin-Walled Structures, 2021, 160, 107387.	5.3	54
56	Thermal Buckling of Piezoelectric Functionally Graded Material Beams. Journal of Thermal Stresses, 2011, 34, 835-850.	2.0	53
57	Dynamic buckling of suddenly heated or compressed FGM beams resting on nonlinear elastic foundation. Composite Structures, 2013, 106, 225-234.	5.8	53
58	Low velocity impact response of thick FGM beams with general boundary conditions in thermal field. Composite Structures, 2013, 104, 293-303.	5.8	52
59	Geometrically Non-Linear Rapid Heating of Temperature-Dependent Circular FGM Plates. Journal of Thermal Stresses, 2014, 37, 1495-1518.	2.0	52
60	Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment. International Journal of Mechanical Sciences, 2019, 164, 105187.	6.7	51
61	NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates. Journal of Thermal Stresses, 2020, 43, 90-108.	2.0	51
62	Vibration of a Temperature-Dependent Thermally Pre/Postbuckled FGM Beam Over a Nonlinear Hardening Elastic Foundation. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	48
63	Free vibrations of graphene platelet reinforced composite skew plates resting on point supports. Thin-Walled Structures, 2022, 176, 109363.	5.3	48
64	Thermal Buckling of Functionally Graded Material Cylindrical Shells on Elastic Foundation. AIAA Journal, 2012, 50, 500-503.	2.6	47
65	Exact Solution for Nonlinear Stability of Piezoelectric FGM Timoshenko Beams Under Thermo-Electrical Loads. Journal of Thermal Stresses, 2013, 36, 1056-1076.	2.0	46
66	Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment. Thin-Walled Structures, 2018, 132, 48-57.	5.3	46
67	Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy. Journal of Composite Materials, 2016, 50, 243-256.	2.4	44
68	Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface. Composite Structures, 2019, 220, 888-898.	5.8	44
69	Rapid heating of FGM rectangular plates. Acta Mechanica, 2016, 227, 421-436.	2.1	43
70	Dynamic snap-through of shallow arches under thermal shock. Aerospace Science and Technology, 2018, 77, 545-554.	4.8	43
71	Thermal and mechanical buckling of sandwich plates with FGM face sheets resting on the Pasternak elastic foundation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226, 32-41.	2.1	42
72	The GDQ approach to thermally nonlinear generalized thermoelasticity of a hollow sphere. International Journal of Mechanical Sciences, 2016, 118, 195-204.	6.7	42

#	Article	IF	CITATIONS
73	Nonlinear generalized thermoelasticity of an isotropic layer based on Lord-Shulman theory. European Journal of Mechanics, A/Solids, 2017, 61, 245-253.	3.7	42
74	Large amplitude free vibration analysis of shear deformable FGM shallow arches on nonlinear elastic foundation. Thin-Walled Structures, 2019, 144, 106237.	5.3	42
75	Application of generalized differential quadrature element method to free vibration of FG-GPLRC T-shaped plates. Engineering Structures, 2021, 242, 112510.	5.3	41
76	Non-linear thermoelectrical stability analysis of functionally graded piezoelectric material beams. Journal of Intelligent Material Systems and Structures, 2013, 24, 399-410.	2.5	40
77	Free vibration of joined cylindrical–hemispherical FGM shells. Archive of Applied Mechanics, 2020, 90, 2185-2199.	2.2	40
78	Free vibration analysis of FG-GPLRC L-shaped plates implementing GDQE approach. Thin-Walled Structures, 2021, 162, 107600.	5.3	40
79	Free vibration of functionally graded graphene platelet reinforced plates: A quasi 3D shear and normal deformable plate model. Composite Structures, 2021, 275, 114409.	5.8	40
80	Thermal Postbuckling of Imperfect Circular Functionally Graded Material Plates: Examination of Voigt, Mori–Tanaka, and Self-Consistent Schemes. Journal of Pressure Vessel Technology, Transactions of the ASME, 2015, 137, .	0.6	39
81	Nonlinear axisymmetric response of temperature-dependent FGM conical shells under rapid heating. Acta Mechanica, 2019, 230, 3019-3039.	2.1	39
82	Nonlinear thermo-inertial stability of thin circular FGM plates. Journal of the Franklin Institute, 2014, 351, 1057-1073.	3.4	38
83	Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation. Computers and Mathematics With Applications, 2018, 75, 1566-1581.	2.7	38
84	Thermal buckling and post-buckling analysis of geometrically imperfect FGM clamped tubes on nonlinear elastic foundation. Applied Mathematical Modelling, 2019, 71, 12-30.	4.2	38
85	Non-linear thermo-elastic and buckling analysis of FGM shallow arches. Composite Structures, 2014, 109, 75-85.	5.8	37
86	Nonlinear Vibration Behavior of Rapidly Heated Temperature-Dependent FGM Shallow Spherical Shells. AIAA Journal, 2019, 57, 4071-4084.	2.6	37
87	Geometrically nonlinear rapid surface heating of temperature-dependent FGM arches. Aerospace Science and Technology, 2019, 90, 264-274.	4.8	37
88	Multi-Scale Buckling and Post-Buckling Analysis of Functionally Graded Laminated Composite Plates Reinforced by Defective Graphene Sheets. International Journal of Structural Stability and Dynamics, 2020, 20, 2050001.	2.4	35
89	Instability of heated circular FGM plates on a partial Winkler-type foundation. Acta Mechanica, 2013, 224, 1045-1060.	2.1	34
90	Geometrically nonlinear analysis of shear deformable FGM shallow pinned arches on nonlinear elastic foundation under mechanical and thermal loads. Acta Mechanica, 2018, 229, 3123-3141.	2.1	33

#	Article	IF	CITATIONS
91	A GDQ approach to thermally nonlinear generalized thermoelasticity of disks. Journal of Thermal Stresses, 2017, 40, 121-133.	2.0	32
92	Vibration characteristics of composite doubly curved shells reinforced with graphene platelets with arbitrary edge supports. Acta Mechanica, 2022, 233, 665-683.	2.1	31
93	Application of two-steps perturbation technique to geometrically nonlinear analysis of long FGM cylindrical panels on elastic foundation under thermal load. Journal of Thermal Stresses, 2018, 41, 847-865.	2.0	30
94	Axisymmetric nonlinear rapid heating of FGM cylindrical shells. Journal of Thermal Stresses, 2019, 42, 490-505.	2.0	30
95	Free vibration analysis of functionally graded cylindrical shells reinforced with graphene platelets. Composite Structures, 2021, 276, 114546.	5.8	30
96	Free vibration of conical shells with intermediate ring support. Aerospace Science and Technology, 2017, 69, 321-332.	4.8	29
97	Rapid heating vibrations of FGM annular sector plates. Engineering With Computers, 2021, 37, 305-322.	6.1	29
98	Asymmetric thermo-inertial buckling of annular plates. Acta Mechanica, 2017, 228, 1493-1509.	2.1	28
99	Thermomechanical nonlinear in-plane analysis of fix-ended FGM shallow arches on nonlinear elastic foundation using two-step perturbation technique. International Journal of Mechanics and Materials in Design, 2019, 15, 225-244.	3.0	27
100	Axisymmetric static and dynamics snap-through phenomena in a thermally postbuckled temperature-dependent FGM circular plate. International Journal of Non-Linear Mechanics, 2017, 89, 1-13.	2.6	26
101	Free vibration analysis of pre/post buckled rotating functionally graded beams subjected to uniform temperature rise. Thin-Walled Structures, 2021, 158, 107187.	5.3	26
102	Vibrational behavior of thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic foundation: a two-step perturbation technique. Acta Mechanica, 2021, 232, 3897-3915.	2.1	26
103	Influence of graphene platelets on the response of composite plates subjected to a moving load. Mechanics Based Design of Structures and Machines, 2022, 50, 1123-1136.	4.7	25
104	Nonlinear rapid heating of shallow arches. Journal of Thermal Stresses, 2018, 41, 1244-1258.	2.0	24
105	On the free vibrations of FG-GPLRC folded plates using GDQE procedure. Composite Structures, 2022, 286, 115273.	5.8	23
106	On buckling and post-buckling of rotating clamped-clamped functionally graded beams in thermal environment. Mechanics Based Design of Structures and Machines, 2022, 50, 2779-2794.	4.7	22
107	Free vibrations of functionally graded material cylindrical shell closed with two spherical caps. Ships and Offshore Structures, 2022, 17, 939-951.	1.9	22
108	Torsional vibration of functionally graded carbon nanotube reinforced conical shells. Science and Engineering of Composite Materials, 2018, 25, 41-52.	1.4	20

#	Article	IF	CITATIONS
109	Free and forced vibrations of graphene platelets reinforced composite laminated arches subjected to moving load. Meccanica, 2022, 57, 1105-1124.	2.0	20
110	On the response of graphene platelet reinforced composite laminated plates subjected to instantaneous thermal shock. Engineering Analysis With Boundary Elements, 2022, 141, 167-180.	3.7	20
111	Thermally induced large deflection analysis of shear deformable FGM shallow curved tubes using perturbation method. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2019, 99, e201800148.	1.6	19
112	Buckling and Post-Buckling Analysis of Geometrically Imperfect FGM Pin-Ended Tubes Surrounded by Nonlinear Elastic Medium Under Compressive and Thermal Loads. International Journal of Structural Stability and Dynamics, 2019, 19, 1950089.	2.4	18
113	Application of Ritz method to large amplitude rapid surface heating of FGM shallow arches. Archive of Applied Mechanics, 2022, 92, 1287-1301.	2.2	18
114	Generalized thermo-electro-elasticity of a piezoelectric disk using Lord-Shulman theory. Journal of Thermal Stresses, 2020, 43, 473-488.	2.0	17
115	Exact Solution for Nonlinear Thermal Stability of Geometrically Imperfect Hybrid Laminated Composite Timoshenko Beams Embedded with SMA Fibers. Journal of Engineering Mechanics - ASCE, 2015, 141, .	2.9	16
116	Free vibration of arbitrary thick FGM deep arches using unconstrained higher-order shear deformation theory. Thin-Walled Structures, 2019, 136, 258-266.	5.3	16
117	A four-variable shear and normal deformable quasi-3D beam model to analyze the free and forced vibrations of FG-GPLRC beams under moving load. Acta Mechanica, 0, , .	2.1	16
118	Asymmetric thermal buckling of annular plates on a partial elastic foundation. Journal of Thermal Stresses, 2017, 40, 1015-1029.	2.0	15
119	Dynamic snap-through of shallow spherical shells subjected to thermal shock. International Journal of Pressure Vessels and Piping, 2020, 179, 104028.	2.6	15
120	Limit load analysis and imperfection sensitivity of heated or compressed FGM beams on nonlinear softening elastic foundation. Mechanics Based Design of Structures and Machines, 2022, 50, 371-394.	4.7	15
121	Molecular dynamics study on the thermal buckling of carbon nanotubes in the presence of pre-load. Materials Research Express, 2017, 4, 015011.	1.6	14
122	Quasi-3D Stability and Vibration Analyses of Sandwich Piezoelectric Plates with an Embedded CNT-Reinforced Composite Core. International Journal of Structural Stability and Dynamics, 2016, 16, 1450097.	2.4	13
123	Thermal buckling behavior of defective CNTs under pre-load: A molecular dynamics study. Journal of Molecular Graphics and Modelling, 2017, 73, 30-35.	2.4	12
124	Generalized thermoelasticity of a piezoelectric layer. Journal of Thermal Stresses, 2019, 42, 863-873.	2.0	12
125	Radially symmetric response of an FGM spherical pressure vessel under thermal shock using the thermally nonlinear Lord-Shulman model. International Journal of Pressure Vessels and Piping, 2020, 182, 104065.	2.6	12
126	Geometrically Nonlinear Response of FGM Beams on Elastic Foundation Subjected to Thermal Shock. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2023, 47, 187-201.	1.3	12

#	Article	IF	CITATIONS
127	Nonlinear stability of sandwich beams with carbon nanotube reinforced faces on elastic foundation under thermal loading. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 1701-1712.	2.1	11
128	Nonlinear generalized thermoelasticity of FGM finite domain based on Lord–Shulman theory. Waves in Random and Complex Media, 2020, , 1-22.	2.7	11
129	Interaction of thermal and mechanical waves in axisymmetric generalized thermoelasticity of rotating disk. Waves in Random and Complex Media, 2021, 31, 420-434.	2.7	11
130	A unified formulation for thermoviscoelasticity of hollow sphere based on the second sound theories. Thin-Walled Structures, 2021, 158, 107167.	5.3	11
131	Large Amplitude Free Vibrations of FGM Beams on Nonlinear Elastic Foundation in Thermal Field Based on Neutral/Mid-plane Formulations. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2021, 45, 611-630.	1.3	11
132	Asymmetric compressive stability of rotating annular plates. European Journal of Computational Mechanics, 2019, , 1-21.	0.6	10
133	Application of Chebyshev collocation method to unified generalized thermoelasticity of a finite domain. Journal of Thermal Stresses, 2021, 44, 547-565.	2.0	10
134	Generalized magneto-thermoelasticity of a layer based on the Lord–Shulman and Green–Lindsay theories. Journal of Thermal Stresses, 2022, 45, 319-340.	2.0	9
135	Dynamic snap-through of functionally graded shallow arches under rapid surface heating. Thin-Walled Structures, 2022, 178, 109541.	5.3	9
136	Postbuckling of FGM rings. International Journal of Mechanical Sciences, 2014, 85, 187-195.	6.7	8
137	Electric Field Effects on Buckling Analysis of Boron–Nitride Nanotubes Using Surface Elasticity Theory. International Journal of Structural Stability and Dynamics, 2020, 20, 2050137.	2.4	8
138	Thermally nonlinear response of an exponentially graded disk using the Lord-Shulman model. Journal of Thermal Stresses, 2020, 43, 1547-1563.	2.0	8
139	Symmetric Thermo-Electro-Elastic Response of Piezoelectric Hollow Cylinder Under Thermal Shock Using Lord–Shulman Theory. International Journal of Structural Stability and Dynamics, 2020, 20, 2050059.	2.4	8
140	LS-based and GL-based thermoelasticity in two dimensional bounded media: A Chebyshev collocation analysis. Journal of Thermal Stresses, 0, , 1-16.	2.0	8
141	Perturbation Method for Thermal Post-Buckling Analysis of Shear Deformable FG-CNTRC Beams with Different Boundary Conditions. International Journal of Structural Stability and Dynamics, 2021, 21, .	2.4	8
142	Thermomechanical analysis of large deflection in shear deformable FG NT reinforced composite beams using perturbation technique. Mathematical Methods in the Applied Sciences, 0, , .	2.3	7
143	Buckling of heated temperature dependent FGM cylindrical shell surrounded by elastic medium. Journal of Theoretical and Applied Mechanics, 0, , 869.	0.5	7
144	Mechanical buckling analysis of functionally graded composite laminated plates reinforced with temperature dependent graphene sheets resting on elastic foundation. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, e202100097.	1.6	7

#	Article	IF	CITATIONS
145	Low velocity impact analysis of composite laminated beams subjected to multiple impacts in thermal field. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2016, 96, 843-856.	1.6	6
146	Asymmetric compressive stability of rotating annular plates. European Journal of Computational Mechanics, 0, , 325-350.	0.0	5
147	Postbuckling up to Collapse of Polar Orthotropic Linearly Elastic Rings Subjected to External Pressure. International Journal of Structural Stability and Dynamics, 2016, 16, 1450091.	2.4	4
148	Analysis of arbitrary thick graphene platelet reinforced composite plates subjected to moving load using a shear and normal deformable plate model. Materials Today Communications, 2022, 31, 103745.	1.9	4
149	Large Amplitude Thremally Induced Vibration of Circular FGM Plate. , 2014, , .		0