Markus Johannes Ege

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/786401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trajectories of asthma and allergy symptoms from childhood to adulthood. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1192-1203.	5.7	9
2	Immune Responsiveness to LPS Determines Risk of Childhood Wheeze and Asthma in 17q21 Risk Allele Carriers. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 641-650.	5.6	13
3	Early priming of asthma and respiratory allergies: Future aspects of prevention. Pediatric Allergy and Immunology, 2022, 33, e13773.	2.6	3
4	Asthma in farm children is more determined by genetic polymorphisms and in nonâ€farm children by environmental factors. Pediatric Allergy and Immunology, 2021, 32, 295-304.	2.6	17
5	Excessive Unbalanced Meat Consumption in the First Year of Life Increases Asthma Risk in the PASTURE and LUKAS2 Birth Cohorts. Frontiers in Immunology, 2021, 12, 651709.	4.8	7
6	Identification of OCA2 as a novel locus for the coâ€morbidity of asthmaâ€plusâ€eczema. Clinical and Experimental Allergy, 2021, , .	2.9	3
7	Structural racism and readmission for childhood asthma—a quest for causality. Journal of Allergy and Clinical Immunology, 2021, 148, 1165-1166.	2.9	0
8	The Beneficial Effect of Farm Milk Consumption on Asthma, Allergies, and Infections: From Meta-Analysis of Evidence to Clinical Trial. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 878-889.e3.	3.8	53
9	Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nature Medicine, 2020, 26, 1766-1775.	30.7	202
10	Skin cancer risk and shade: comparing the risk of foresters with other outdoor workers. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 2526-2533.	2.4	8
11	Genomeâ€wide interaction study of earlyâ€life smoking exposure on timeâ€ŧoâ€asthma onset in childhood. Clinical and Experimental Allergy, 2019, 49, 1342-1351.	2.9	9
12	Parents know it best: Prediction of asthma and lung function by parental perception of early wheezing episodes. Pediatric Allergy and Immunology, 2019, 30, 795-802.	2.6	7
13	TNF-α–induced protein 3 is a key player in childhood asthma development and environment-mediated protection. Journal of Allergy and Clinical Immunology, 2019, 144, 1684-1696.e12.	2.9	40
14	Late thymic deficiency after HLA-haploidentical hematopoietic stem cell transplantation for severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2019, 143, 1623-1626.e13.	2.9	8
15	Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nature Medicine, 2019, 25, 1089-1095.	30.7	219
16	Development of atopic sensitization in Finnish and Estonian children: AÂlatent class analysis in a multicenter cohort. Journal of Allergy and Clinical Immunology, 2019, 143, 1904-1913.e9.	2.9	10
17	Association between antibiotic treatment during pregnancy and infancy and the development of allergic diseases. Pediatric Allergy and Immunology, 2019, 30, 423-433.	2.6	68
18	An approach to the asthmaâ€protective farm effect by geocoding: Good farms and better farms. Pediatric Allergy and Immunology, 2018, 29, 275-282.	2.6	42

#	Article	IF	CITATIONS
19	Exposure to nonmicrobial N-glycolylneuraminic acid protects farmers' children against airway inflammation and colitis. Journal of Allergy and Clinical Immunology, 2018, 141, 382-390.e7.	2.9	44
20	Functional phenotypes determined by fluctuation-based clustering of lung function measurements in healthy and asthmatic cohort participants. Thorax, 2018, 73, 107-115.	5.6	15
21	Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nature Genetics, 2018, 50, 1072-1080.	21.4	106
22	Protective effects of breastfeeding on respiratory symptoms in infants with 17q21 asthma risk variants. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2388-2392.	5.7	17
23	Prenatal Markers of Asthma and Maternal Asthma Status. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 529-530.	2.9	1
24	Skin prick tests and specific IgE in 10â€yearâ€old children: Agreement and association with allergic diseases. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1365-1373.	5.7	28
25	Asthma and Prenatal Inflammation. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 546-548.	5.6	3
26	Phenotypes of Atopic Dermatitis Depending on the Timing of Onset and Progression in Childhood. JAMA Pediatrics, 2017, 171, 655.	6.2	197
27	Asthmatic farm children show increased CD3+CD8low T-cells compared to non-asthmatic farm children. Clinical Immunology, 2017, 183, 285-292.	3.2	3
28	Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts. Journal of Allergy and Clinical Immunology, 2017, 139, 1935-1945.e12.	2.9	76
29	A switch in regulatory T cells through farm exposure during immune maturation in childhood. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 604-615.	5.7	46
30	Bacterial microbiota of the upper respiratory tract and childhood asthma. Journal of Allergy and Clinical Immunology, 2017, 139, 826-834.e13.	2.9	165
31	Environmental and mucosal microbiota and their role in childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 109-119.	5.7	94
32	Identification of fungal candidates for asthma protection in a large populationâ€based study. Pediatric Allergy and Immunology, 2017, 28, 72-78.	2.6	10
33	Enhanced T helper 1 and 2 cytokine responses at birth associate with lower risk of middle ear infections in infancy. Pediatric Allergy and Immunology, 2017, 28, 53-59.	2.6	5
34	Good and Bad Farming: The Right Microbiome Protects from Allergy. Birkhauser Advances in Infectious Diseases, 2017, , 51-68.	0.3	1
35	Effect of Processing Intensity on Immunologically Active Bovine Milk Serum Proteins. Nutrients, 2017, 9, 963.	4.1	56
36	The Hygiene Hypothesis in the Age of the Microbiome. Annals of the American Thoracic Society, 2017, 14, S348-S353.	3.2	88

#	Article	IF	CITATIONS
37	The Hygiene Hypothesis of Allergy and Asthma. , 2016, , 328-335.		5
38	<i><scp>IL</scp>â€33</i> polymorphisms are associated with increased risk of hay fever and reduced regulatory T cells in a birth cohort. Pediatric Allergy and Immunology, 2016, 27, 687-695.	2.6	31
39	Reply. Journal of Allergy and Clinical Immunology, 2016, 138, 938-939.	2.9	1
40	ldentification of a new locus at 16q12 associated with time to asthma onset. Journal of Allergy and Clinical Immunology, 2016, 138, 1071-1080.	2.9	25
41	ω-3 fatty acids contribute to the asthma-protective effect of unprocessed cow's milk. Journal of Allergy and Clinical Immunology, 2016, 137, 1699-1706.e13.	2.9	90
42	microRNA in native and processed cow's milk and its implication for the farm milk effect on asthma. Journal of Allergy and Clinical Immunology, 2016, 137, 1893-1895.e13.	2.9	69
43	Microbes and asthma: Opportunities for intervention. Journal of Allergy and Clinical Immunology, 2016, 137, 690-697.	2.9	68
44	The Early Development of Wheeze. Environmental Determinants and Genetic Susceptibility at 17q21. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 889-897.	5.6	130
45	Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nature Communications, 2015, 6, 8804.	12.8	148
46	Consumption of unprocessed cow's milk protects infants from common respiratory infections. Journal of Allergy and Clinical Immunology, 2015, 135, 56-62.e2.	2.9	96
47	Asthma and the Hygiene Hypothesis. Does Cleanliness Matter?. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 522-529.	5.6	61
48	Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science, 2015, 349, 1106-1110.	12.6	483
49	LATE-BREAKING ABSTRACT: Chr17q21 modifies environmental effects on respiratory infections in infancy and effects on asthma. , 2015, , .		1
50	Clinical and Epidemiologic Phenotypes of Childhood Asthma. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 129-138.	5.6	159
51	Serum vitamin E concentrations at 1Âyear and risk of atopy, atopic dermatitis, wheezing, and asthma in childhood: the <scp>PASTURE</scp> study. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 87-94.	5.7	23
52	Bioavailability and Allergoprotective Capacity of Milk-Associated Conjugated Linoleic Acid in a Murine Model of Allergic Airway Inflammation. International Archives of Allergy and Immunology, 2014, 163, 234-242.	2.1	9
53	Fraction of exhaled nitric oxide values in childhood are associated with 17q11.2-q12 and 17q12-q21 variants. Journal of Allergy and Clinical Immunology, 2014, 134, 46-55.	2.9	33
54	Immunoglobulin <scp>A</scp> and immunoglobulin <scp>G</scp> antibodies against Î²â€łactoglobulin and gliadin at age 1 associate with immunoglobulin <scp>E</scp> sensitization at age 6. Pediatric Allergy and Immunology, 2014, 25, 329-337.	2.6	17

Markus Johannes Ege

#	Article	IF	CITATIONS
55	Novel childhood asthma genes interact with in utero and early-life tobacco smoke exposure. Journal of Allergy and Clinical Immunology, 2014, 133, 885-888.	2.9	47
56	Atopy: AÂmirror of environmental changes?. Journal of Allergy and Clinical Immunology, 2014, 133, 1354-1355.	2.9	6
57	SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood, 2014, 123, 281-289.	1.4	150
58	Can genes forecast asthma risk?. Lancet Respiratory Medicine,the, 2013, 1, 425-426.	10.7	4
59	Comparisons of power of statistical methods for gene–environment interaction analyses. European Journal of Epidemiology, 2013, 28, 785-797.	5.7	8
60	Atopic sensitization in the first year of life. Journal of Allergy and Clinical Immunology, 2013, 131, 781-788.e9.	2.9	49
61	Analysis of the Fungal Flora in Environmental Dust Samples by PCR–SSCP Method. Current Microbiology, 2013, 67, 156-169.	2.2	8
62	Genomeâ€wide association study of body mass index in 23Â000 individuals with and without asthma. Clinical and Experimental Allergy, 2013, 43, 463-474.	2.9	68
63	Microbial Airway Colonization: A Cause of Asthma and Pneumonia?. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1188-1189.	5.6	12
64	Farmâ€derived <scp>G</scp> ramâ€positive bacterium <i><scp>S</scp>taphylococcus sciuri </i> <scp>W</scp> 620 prevents asthma phenotype in <scp>HDM</scp> †and <scp>OVA</scp> â€exposed mice. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 322-329.	. 5.7	68
65	Inflammatory response and IgE sensitization at early age. Pediatric Allergy and Immunology, 2013, 24, 395-401.	2.6	16
66	Rule-Based Models of the Interplay between Genetic and Environmental Factors in Childhood Allergy. PLoS ONE, 2013, 8, e80080.	2.5	18
67	Environmental bacteria and childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 1565-1571.	5.7	87
68	Development and genetic influence of the rectal bacterial flora of newborn calves. Veterinary Microbiology, 2012, 161, 179-185.	1.9	62
69	The international effort: building the bridge for Translational Medicine: Report of the 1st International Conference of Translational Medicine (ICTM). Clinical and Translational Medicine, 2012, 1, 15.	4.0	8
70	Prenatal and early-life exposures alter expression of innate immunity genes: The PASTURE cohort study. Journal of Allergy and Clinical Immunology, 2012, 130, 523-530.e9.	2.9	87
71	Exposure to microbial agents in house dust and wheezing, atopic dermatitis and atopic sensitization in early childhood: a birth cohort study in rural areas. Clinical and Experimental Allergy, 2012, 42, 1246-1256.	2.9	58
72	Healthâ€related quality of life does not explain the protective effect of farming on allergies. Pediatric Allergy and Immunology, 2012, 23, 519-521.	2.6	6

#	Article	IF	CITATIONS
73	Few associations between highâ€sensitivity Câ€reactive protein and environmental factors in 4.5â€yearâ€old children. Pediatric Allergy and Immunology, 2012, 23, 522-528.	2.6	13
74	Gene-environment interaction for childhood asthma and exposure to farming in Central Europe. Journal of Allergy and Clinical Immunology, 2011, 127, 138-144.e4.	2.9	138
75	Intestinal microbial diversity in infancy and allergy risk at school age. Journal of Allergy and Clinical Immunology, 2011, 128, 653-654.	2.9	9
76	The protective effect of farm milk consumption on childhood asthma and atopy: The GABRIELA study. Journal of Allergy and Clinical Immunology, 2011, 128, 766-773.e4.	2.9	244
77	The GABRIEL Advanced Surveys: study design, participation and evaluation of bias. Paediatric and Perinatal Epidemiology, 2011, 25, 436-447.	1.7	47
78	Exposure to Environmental Microorganisms and Childhood Asthma. New England Journal of Medicine, 2011, 364, 701-709.	27.0	1,339
79	Maternal vitamin D intake during pregnancy increases gene expression of ILT3 and ILT4 in cord blood. Clinical and Experimental Allergy, 2010, 40, 786-794.	2.9	53
80	Allergic rhinitis as a predictor for wheezing onset in school-aged children. Journal of Allergy and Clinical Immunology, 2010, 126, 1170-1175.e2.	2.9	138
81	Cord blood cytokines are modulated by maternal farming activities and consumption of farm dairy products during pregnancy: The PASTURE Study. Journal of Allergy and Clinical Immunology, 2010, 125, 108-115.e3.	2.9	157
82	Coincidence of Recurrent Hemiparesis and Detection of ALL in a 4-Year-Old Girl: One or Two Diseases?. Klinische Padiatrie, 2009, 221, 386-389.	0.6	0
83	Allergic Disease and Atopic Sensitization in Children in Relation to Measles Vaccination and Measles Infection. Pediatrics, 2009, 123, 771-778.	2.1	47
84	Cord Blood Cytokines are Modulated by Maternal Farming Activities and Consumption of Farm Products during Pregnancy - The PASTURE-Study. Journal of Allergy and Clinical Immunology, 2009, 123, S21-S21.	2.9	0
85	Specific IgE to allergens in cord blood is associated with maternal immunity to <i>Toxoplasma gondii</i> and rubella virus. Allergy: European Journal of Allergy and Clinical Immunology, 2008, 63, 1505-1511.	5.7	16
86	Animal shed Bacillus licheniformis spores possess allergy-protective as well as inflammatory properties. Journal of Allergy and Clinical Immunology, 2008, 122, 307-312.e8.	2.9	65
87	Prenatal exposure to a farm environment modifies atopic sensitization at birth. Journal of Allergy and Clinical Immunology, 2008, 122, 407-412.e4.	2.9	165
88	Cord blood allergen-specific IgE is associated with reduced IFN-γ production by cord blood cells: The Protection against Allergy—Study in Rural Environments (PASTURE) study. Journal of Allergy and Clinical Immunology, 2008, 122, 711-716.	2.9	84
89	Application of PCR-SSCP for molecular epidemiological studies on the exposure of farm children to bacteria in environmental dust. Journal of Microbiological Methods, 2008, 73, 49-56.	1.6	35
90	Occurrence of Listeria spp. in mattress dust of farm children in Bavaria. Environmental Research, 2008, 107, 299-304.	7.5	13

#	Article	IF	CITATIONS
91	Not all farming environments protect against the development of asthma and wheeze in children. Journal of Allergy and Clinical Immunology, 2007, 119, 1140-1147.	2.9	252
92	Environmental determinants of atopic eczema phenotypes in relation to asthma and atopic sensitization. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 1387-1393.	5.7	25
93	Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clinical and Experimental Allergy, 2007, 37, 661-670.	2.9	223
94	The Asthma Epidemic. New England Journal of Medicine, 2006, 355, 2226-2235.	27.0	1,432
95	Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. Journal of Allergy and Clinical Immunology, 2006, 117, 817-823.	2.9	413
96	The role of parasitic infections in atopic diseases in rural schoolchildren. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 996-1001.	5.7	26
97	Omenn syndrome due to ARTEMIS mutations. Blood, 2005, 105, 4179-4186.	1.4	205
98	Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood, 2001, 98, 1847-1851.	1.4	217
99	Eradication of a dysfunctional HLA-haploidentical T cell system by a second HLA-identical BMT. Bone Marrow Transplantation, 2001, 28, 993-995.	2.4	2
100	Skin-explant model to evaluate effectiveness of depletion of hla-alloreactive t-cells. Experimental Hematology, 2000, 28, 103.	0.4	0