Randy Strong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/786368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapamycin Extends Life Span in Apc Colon Cancer FAP Model. Clinical Colorectal Cancer, 2021, 20, e61-e70.	2.3	22
2	NIA Interventions Testing Program: A collaborative approach for investigating interventions to promote healthy aging. , 2021, , 219-235.		11
3	17â€aâ€estradiol late in life extends lifespan in aging UMâ€HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex. Aging Cell, 2021, 20, e13328.	6.7	48
4	San Antonio Nathan Shock Center: your one-stop shop for aging research. GeroScience, 2021, 43, 2105-2118.	4.6	4
5	STRONG STAR and the Consortium to Alleviate PTSD: Shaping the future of combat PTSD and related conditions in military and veteran populations. Contemporary Clinical Trials, 2021, 110, 106583.	1.8	15
6	Rapamycinâ€mediated mouse lifespan extension: Lateâ€life dosage regimes with sexâ€specific effects. Aging Cell, 2020, 19, e13269.	6.7	49
7	Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight, 2020, 5, .	5.0	51
8	Sex-dependent lifespan extension of ApcMin/+ FAP mice by chronic mTOR inhibition. Aging Pathobiology and Therapeutics, 2020, 2, 187-194.	0.5	7
9	Acarbose improves health and lifespan in aging HET3 mice. Aging Cell, 2019, 18, e12898.	6.7	90
10	Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiology, 2019, 19, 130.	3.3	218
11	Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell, 2019, 18, e12941.	6.7	45
12	Glycine supplementation extends lifespan of male and female mice. Aging Cell, 2019, 18, e12953.	6.7	53
13	Genetically heterogeneous mice exhibit a female survival advantage that is age―and siteâ€specific: Results from a large multiâ€site study. Aging Cell, 2019, 18, e12905.	6.7	24
14	Dexamethasone Causes Hypertension in Rats Even Under Chemical Blockade of Peripheral Sympathetic Nerves. Frontiers in Neuroscience, 2019, 13, 1305.	2.8	8
15	Hydrogen sulfide ameliorates aging-associated changes in the kidney. GeroScience, 2018, 40, 163-176.	4.6	49
16	Metformin reduces glucose intolerance caused by rapamycin treatment in genetically heterogeneous female mice. Aging, 2018, 10, 386-401.	3.1	32
17	NIA Interventions Testing Program: Investigating Putative Aging Intervention Agents in a Genetically Heterogeneous Mouse Model. EBioMedicine, 2017, 21, 3-4.	6.1	87
18	Neurochemical and motor changes in mice with combined mutations linked to Parkinson's disease. Pathobiology of Aging & Age Related Diseases, 2017, 7, 1267855.	1.1	8

#	Article	IF	CITATIONS
19	A Novel Model of Dexamethasone-Induced Hypertension: Use in Investigating the Role of Tyrosine Hydroxylase. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 528-536.	2.5	17
20	Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an αâ€glucosidase inhibitor or a Nrf2â€inducer. Aging Cell, 2016, 15, 872-884.	6.7	277
21	Adaptations to chronic rapamycin in mice. Pathobiology of Aging & Age Related Diseases, 2016, 6, 31688.	1.1	12
22	NIA Interventions Testing Program. , 2016, , 287-303.		3
23	Renal responses produced by microinjection of the kappa opioid receptor agonist, U50â€488H, into sites within the rat lamina terminalis. Pharmacology Research and Perspectives, 2015, 3, e00117.	2.4	4
24	Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy. Pathobiology of Aging & Age Related Diseases, 2015, 5, 28743.	1.1	51
25	Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix) Tj ETQq1	1 0.78433 3.1	l4rgBT /Ov€ 42
26	Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice. Frontiers in Molecular Neuroscience, 2014, 7, 83.	2.9	17
27	eRapa Restores a Normal Life Span in a FAP Mouse Model. Cancer Prevention Research, 2014, 7, 169-178.	1.5	63
28	Rapamycinâ€mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell, 2014, 13, 468-477.	6.7	486
29	Acarbose, 17â€Î±â€estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell, 2014, 13, 273-282.	6.7	331
30	Rapamycin-induced metabolic defects are reversible in both lean and obese mice. Aging, 2014, 6, 742-754.	3.1	62
31	Expression of synaptophysin protein in different dopaminergic cell lines. Journal of Biochemical and Pharmacological Research, 2014, 2, 185-190.	1.7	4
32	Evaluation of Resveratrol, Green Tea Extract, Curcumin, Oxaloacetic Acid, and Medium-Chain Triglyceride Oil on Life Span of Genetically Heterogeneous Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 6-16.	3.6	182
33	Exogenous prenatal corticosterone exposure mimics the effects of prenatal stress on adult brain stress response systems and fear extinction behavior. Psychoneuroendocrinology, 2013, 38, 2746-2757.	2.7	58
34	Evolutionary conservation of an atypical glucocorticoidâ€responsive element in the human tyrosine hydroxylase gene. Journal of Neurochemistry, 2013, 126, 19-28.	3.9	15
35	Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell, 2013, 12, 851-862.	6.7	258
36	Determinants of buildup of the toxic dopamine metabolite <scp>DOPAL</scp> in Parkinson's disease. Journal of Neurochemistry, 2013, 126, 591-603.	3.9	169

#	Article	IF	CITATIONS
37	Chronic Rapamycin Restores Brain Vascular Integrity and Function Through NO Synthase Activation and Improves Memory in Symptomatic Mice Modeling Alzheimer's Disease. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1412-1421.	4.3	181
38	Cognitive Dysfunction Precedes the Onset of Motor Symptoms in the MitoPark Mouse Model of Parkinson's Disease. PLoS ONE, 2013, 8, e71341.	2.5	47
39	Rapamycin extends life span of Rb1+/â^' mice by inhibiting neuroendocrine tumors. Aging, 2013, 5, 100-110.	3.1	80
40	Homozygous Deletion of Glutathione Peroxidase 1 and Aldehyde Dehydrogenase 1a1 Genes Is Not Associated with Schizophrenia-Like Behavior in Mice. Journal of Biochemical and Pharmacological Research, 2013, 1, 228-235.	1.7	3
41	Lifelong rapamycin administration ameliorates ageâ€dependent cognitive deficits by reducing ILâ€1β and enhancing NMDA signaling. Aging Cell, 2012, 11, 326-335.	6.7	193
42	Rapamycin slows aging in mice. Aging Cell, 2012, 11, 675-682.	6.7	580
43	Effects of chronic plus acute prolonged stress on measures of coping style, anxiety, and evoked HPA-axis reactivity. Neuropharmacology, 2012, 63, 1118-1126.	4.1	64
44	Rapamycin Reverses Elevated mTORC1 Signaling in Lamin A/C–Deficient Mice, Rescues Cardiac and Skeletal Muscle Function, and Extends Survival. Science Translational Medicine, 2012, 4, 144ra103.	12.4	300
45	Neurodegeneration and Motor Dysfunction in Mice Lacking Cytosolic and Mitochondrial Aldehyde Dehydrogenases: Implications for Parkinson's Disease. PLoS ONE, 2012, 7, e31522.	2.5	142
46	Rapamycin, But Not Resveratrol or Simvastatin, Extends Life Span of Genetically Heterogeneous Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 191-201.	3.6	774
47	Effects of anabolic androgenic steroids and social subjugation on behavior and neurochemistry in male rats. Pharmacology Biochemistry and Behavior, 2011, 97, 416-422.	2.9	12
48	Inducing Autophagy by Rapamycin Before, but Not After, the Formation of Plaques and Tangles Ameliorates Cognitive Deficits. PLoS ONE, 2011, 6, e25416.	2.5	357
49	The Role of mTOR Signaling in Controlling Mammalian Life Span: What a Fungicide Teaches Us About Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 580-589.	3.6	42
50	Inhibition of mTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-β Levels in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2010, 5, e9979.	2.5	875
51	Molecular Interplay between Mammalian Target of Rapamycin (mTOR), Amyloid-β, and Tau. Journal of Biological Chemistry, 2010, 285, 13107-13120.	3.4	754
52	Identification of an Activator Protein-1-Like Sequence as the Glucocorticoid Response Element in the Rat Tyrosine Hydroxylase Gene. Molecular Pharmacology, 2009, 75, 589-598.	2.3	34
53	Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 2009, 460, 392-395.	27.8	3,191
54	WIN55,212â€2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridine mouse model of Parkinson's disease. European Journ Neuroscience, 2009, 29, 2177-2186.	ial 0 2. 6	202

#	Article	IF	CITATIONS
55	Lifespan extension in genetically modified mice. Aging Cell, 2009, 8, 346-352.	6.7	100
56	Detoxification of Biogenic Aldehydes in Parkinson¡¦s Disease. FASEB Journal, 2009, 23, 963.4.	0.5	0
57	Identification of a glucocorticoid-responsive element in the promoter region of the mouse tyrosine hydroxylase gene. Journal of Neurochemistry, 2008, 76, 825-834.	3.9	47
58	Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell, 2008, 7, 641-650.	6.7	283
59	Plasma Glucose and the Action of Calorie Restriction on Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 1059-1070.	3.6	39
60	An aging Interventions Testing Program: study design and interim report. Aging Cell, 2007, 6, 565-575.	6.7	177
61	Monoamine Metabolism and Behavioral Responses to Ethanol in Mitochondrial Aldehyde Dehydrogenase Knockout Mice. Alcoholism: Clinical and Experimental Research, 2006, 30, 1650-1658.	2.4	20
62	Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radical Biology and Medicine, 2006, 40, 1993-2004.	2.9	378
63	Glutathione peroxidase 4 protects cortical neurons from oxidative injury and amyloid toxicity. Journal of Neuroscience Research, 2006, 84, 202-208.	2.9	79
64	Housing Density Does Not Influence the Longevity Effect of Calorie Restriction. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 1510-1517.	3.6	71
65	Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress. Free Radical Biology and Medicine, 2004, 36, 1625-1634.	2.9	117
66	Genetic mouse models of extended lifespan. Experimental Gerontology, 2003, 38, 1353-1364.	2.8	208
67	Cholinergic deficits in the septal–hippocampal pathway of the SAM-P/8 senescence accelerated mouse. Brain Research, 2003, 966, 150-156.	2.2	43
68	Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiological Genomics, 2003, 16, 29-37.	2.3	654
69	Cloning and characterization of a testis and brain-specific isoform of mouse 3′-phosphoinositide-dependent protein kinase-1, mPDK-1β. Biochemical and Biophysical Research Communications, 2002, 294, 136-144.	2.1	11
70	A tetracycline-repressible transactivator approach suggests a shorter half-life for tyrosine hydroxylase mRNA. Brain Research Protocols, 2001, 7, 137-146.	1.6	6
71	Interaction of a glucocorticoid-responsive element with regulatory sequences in the promoter region of the mouse tyrosine hydroxylase gene. Journal of Neurochemistry, 2001, 78, 1379-1388.	3.9	35
72	Effects of acute restraint stress on tyrosine hydroxylase mRNA expression in locus coeruleus of Wistar and Wistar-Kyoto rats. Molecular Brain Research, 2000, 75, 1-7.	2.3	57

#	Article	IF	CITATIONS
73	Transcriptional and Posttranscriptional Control of Tyrosine Hydroxylase Gene Expression During Persistent Stimulation of Pituitary Adenylate Cyclaseâ€Activating Polypeptide Receptors on PC12 Cells: Regulation by Protein Kinase Aâ€Dependent and Protein Kinase Aâ€Independent Pathways. Journal of Neurochemistry, 1998, 71, 478-486.	3.9	38
74	Nuclei Isolation from Bone Cells for Nuclear Run-on Assays. BioTechniques, 1997, 23, 422-424.	1.8	7
75	An endogenous dopaminergic neurotoxin: Implication for Parkinson's disease. Experimental Neurology, 1995, 4, 271-281.	1.7	96
76	Prostaglandin H Synthetaseâ€Mediated Metabolism of Dopamine: Implication for Parkinson's Disease. Journal of Neurochemistry, 1995, 64, 1645-1654.	3.9	135
77	Characterization of peroxidative oxidation products of dopamine by mass spectrometry. Biomedical Applications, 1994, 658, 21-30.	1.7	11
78	Confirmation of a dopamine metabolite in parkinsonian brain tissue by gas chromatography—mass spectrometry. Biomedical Applications, 1993, 614, 205-212.	1.7	32
79	Vasoactive Intestinal Polypeptide-Related Peptides Modulate Tyrosine Hydroxylase Gene Expression in PC12 Cells Through Multiple Adenylate Cyclase-Coupled Receptors. Journal of Neurochemistry, 1993, 60, 1018-1029.	3.9	36
80	Short- and long-term effects of PACAP in PC12 cells: Phosphorylation and induction of tyrosine hydroxylase. Regulatory Peptides, 1992, 37, 332.	1.9	1
81	The effect of aging and dietary restriction on DNA repair. Experimental Cell Research, 1989, 181, 197-204.	2.6	89
82	Geriatric Clinical Pharmacology. Topics in Geriatric Rehabilitation, 1988, 3, 77.	0.4	0
83	Modulation of Age-Related Changes in Serum 1,25-Dihydroxyvitamin D and Parathyroid Hormone by Dietary Restriction of Fischer 344 Rats. Journal of Nutrition, 1988, 118, 1360-1365.	2.9	26
84	Fluidizing effects of centrophenoxine on brain and liver membranes from different age groups of mice. Life Sciences, 1986, 39, 2089-2095.	4.3	19
85	Intra-regional variations in the effect of aging on high affinity choline uptake, choline acetyltransferase and muscarinic cholinergic receptors in rat neostriatum. Experimental Gerontology, 1986, 21, 177-186.	2.8	25
86	Chronic ethanol consumption and aging: Changes in lipid composition of liver microsomes. Experimental Gerontology, 1986, 21, 195-201.	2.8	4
87	Comparison of the hepatic mixed function oxidase system of young, adult, and old non- human primates (Macaca nemestrina). Biochemical Pharmacology, 1985, 34, 2983-2987.	4.4	40
88	High-Affinity Uptake of Neurotransmitters in Rat Neostriatum: Effects of Aging. Journal of Neurochemistry, 1984, 43, 1766-1768.	3.9	45
89	Regional analysis of neostriatal cholinergic and dopaminergic receptor binding and tyrosine hydroxylase activity as a function of aging. Neurochemical Research, 1984, 9, 1641-1652.	3.3	28