
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7862154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PKD2 Functions as an Epidermal Growth Factor-Activated Plasma Membrane Channel. Molecular and Cellular Biology, 2005, 25, 8285-8298.	2.3	154
2	Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. Journal of Psychopharmacology, 2017, 31, 730-739.	4.0	135
3	Hyperexcitability of convergent colon and bladder dorsal root ganglion neurons after colonic inflammation: mechanism for pelvic organ cross-talk. Neurogastroenterology and Motility, 2006, 18, 936-948.	3.0	124
4	Modulation of Voltage-dependent Ca2+Channels in Rabbit Colonic Smooth Muscle Cells by c-Src and Focal Adhesion Kinase. Journal of Biological Chemistry, 1998, 273, 5337-5342.	3.4	111
5	Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. American Journal of Physiology - Cell Physiology, 2004, 287, C558-C563.	4.6	106
6	Molecular Physiology of Enteric Opioid Receptors. American Journal of Gastroenterology Supplements (Print), 2014, 2, 17-21.	0.7	105
7	Blockade of Endocannabinoid Hydrolytic Enzymes Attenuates Precipitated Opioid Withdrawal Symptoms in Mice. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 173-185.	2.5	100
8	Cross-Organ Sensitization of Lumbosacral Spinal Neurons Receiving Urinary Bladder Input in Rats With Inflamed Colon. Gastroenterology, 2005, 129, 1967-1978.	1.3	98
9	The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Scientific Reports, 2017, 7, 42658.	3.3	95
10	Morphine Tolerance in the Mouse Ileum and Colon. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 561-572.	2.5	75
11	Interactive HIV-1 Tat and Morphine-Induced Synaptodendritic Injury Is Triggered through Focal Disruptions in Na+ Influx, Mitochondrial Instability, and Ca2+ Overload. Journal of Neuroscience, 2014, 34, 12850-12864.	3.6	73
12	Role of HERG-like K ⁺ currents in opossum esophageal circular smooth muscle. American Journal of Physiology - Cell Physiology, 1999, 277, C1284-C1290.	4.6	69
13	Altered gene expression and increased bursting activity of colonic smooth muscle ATP-sensitive K+ channels in experimental colitis. American Journal of Physiology - Renal Physiology, 2004, 287, G274-G285.	3.4	59
14	The Role of β-Arrestin2 in the Mechanism of Morphine Tolerance in the Mouse and Guinea Pig Gastrointestinal Tract. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 567-576.	2.5	57
15	Colonic inflammation increases Na+ currents in bladder sensory neurons. NeuroReport, 2004, 15, 2601-2605.	1.2	55
16	The Selective Monoacylglycerol Lipase Inhibitor MJN110 Produces Opioid-Sparing Effects in a Mouse Neuropathic Pain Model. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 145-156.	2.5	52
17	Site and mechanism of morphine tolerance in the gastrointestinal tract. Neurogastroenterology and Motility, 2014, 26, 1361-1367.	3.0	51
18	Altered Ion Channel Activity in Murine Colonic Smooth Muscle Myocytes in an Experimental Colitis Model. Biochemical and Biophysical Research Communications, 2000, 275, 637-642.	2.1	49

#	Article	IF	CITATIONS
19	Hydrogen Sulfide as an Allosteric Modulator of ATP-Sensitive Potassium Channels in Colonic Inflammation. Molecular Pharmacology, 2013, 83, 294-306.	2.3	48
20	Cloning and Functional Characterization of the Smooth Muscle Ether-a-go-go-related Gene K+ Channel. Journal of Biological Chemistry, 2003, 278, 2503-2514.	3.4	46
21	An In-vitro Preparation of Isolated Enteric Neurons and Clia from the Myenteric Plexus of the Adult Mouse. Journal of Visualized Experiments, 2013, , .	0.3	44
22	Morphine Decreases Enteric Neuron Excitability via Inhibition of Sodium Channels. PLoS ONE, 2012, 7, e45251.	2.5	42
23	CCR5 mediates HIV-1 Tat-induced neuroinflammation and influences morphine tolerance, dependence, and reward. Brain, Behavior, and Immunity, 2018, 69, 124-138.	4.1	41
24	Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the K _{ATP} channel complex. American Journal of Physiology - Renal Physiology, 2015, 308, G532-G539.	3.4	40
25	Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat. Journal of Neuroinflammation, 2012, 9, 30.	7.2	39
26	Novel Insights on the Effect of Nicotine in a Murine Colitis Model. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 207-217.	2.5	39
27	Connexinâ€purinergic signaling in enteric glia mediates the prolonged effect of morphine on constipation. FASEB Journal, 2017, 31, 2649-2660.	0.5	38
28	The gut–brain interaction in opioid tolerance. Current Opinion in Pharmacology, 2017, 37, 126-130.	3.5	37
29	lon channel remodeling in gastrointestinal inflammation. Neurogastroenterology and Motility, 2010, 22, 1045-1055.	3.0	36
30	Differences in the characteristics of tolerance to μ-opioid receptor agonists in the colon from wild type and β-arrestin2 knockout mice. European Journal of Pharmacology, 2012, 685, 133-140.	3.5	36
31	Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C. American Journal of Physiology - Renal Physiology, 2014, 306, G328-G337.	3.4	36
32	Effects of HIV-1 Tat on Enteric Neuropathogenesis. Journal of Neuroscience, 2014, 34, 14243-14251.	3.6	33
33	Gastrointestinal motility, dysbiosis and opioid-induced tolerance: is there a link?. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 323-324.	17.8	33
34	The Effects of Sevoflurane and Propofol on QT Interval and Heterologously Expressed Human Ether-A-Go-Go Related Gene Currents in Xenopus Oocytes. Anesthesia and Analgesia, 2006, 102, 98-103.	2.2	32
35	Tolerance to Morphine-Induced Inhibition of TTX-R Sodium Channels in Dorsal Root Ganglia Neurons Is Modulated by Gut-Derived Mediators. IScience, 2018, 2, 193-209.	4.1	30
36	Depletion of [Ca2+]i Inhibits Hypoxia-Induced Vascular Permeability Factor (Vascular Endothelial) Tj ETQq0 0 C) rgBT /Over 2.1	lock 10 Tf 50 28

733-738.

#	Article	IF	CITATIONS
37	Structure–Activity Relationship Studies of 6α- and 6β-Indolylacetamidonaltrexamine Derivatives as Bitopic Mu Opioid Receptor Modulators and Elaboration of the "Message-Address Concept―To Comprehend Their Functional Conversion. ACS Chemical Neuroscience, 2019, 10, 1075-1090.	3.5	28
38	Fenamate-induced enhancement of heterologously expressed HERG currents in Xenopus oocytes. European Journal of Pharmacology, 2002, 452, 269-277.	3.5	27
39	Denitration of Lâ€ŧype calcium channel. FEBS Letters, 2008, 582, 3033-3036.	2.8	27
40	Prolonged sympathetic innervation of sensory neurons in rat thoracolumbar dorsal root ganglia during chronic colitis. Neurogastroenterology and Motility, 2011, 23, 801-e339.	3.0	27
41	Evidence for the Putative Cannabinoid Receptor (GPR55)-Mediated Inhibitory Effects on Intestinal Contractility in Mice. Pharmacology, 2012, 90, 55-65.	2.2	27
42	Nitrotyrosylation of Ca2+ Channels Prevents c-Src Kinase Regulation of Colonic Smooth Muscle Contractility in Experimental Colitis. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 948-956.	2.5	25
43	Coupling of M2 muscarinic receptor to L-type Ca2+ channel via c-src kinase in rabbit colonic circular smooth muscle. Gastroenterology, 2002, 123, 827-834.	1.3	24
44	Chemotherapy induced gastrointestinal toxicities. Advances in Cancer Research, 2022, , 131-166.	5.0	24
45	Opioid-induced hypernociception is associated with hyperexcitability and altered tetrodotoxin-resistant Na ⁺ channel function of dorsal root ganglia. American Journal of Physiology - Cell Physiology, 2012, 302, C1152-C1161.	4.6	23
46	Design, Synthesis, and Biological Evaluation of 17-Cyclopropylmethyl-3,14î²-dihydroxy-4,5î±-epoxy-6î²-[(4′-pyridyl)carboxamido]morphinan Derivatives as Peripheral Selective μ Opioid Receptor Agents. Journal of Medicinal Chemistry, 2012, 55, 10118-10129.	6.4	22
47	6β-N-Heterocyclic substituted naltrexamine derivative NAP as a potential lead to develop peripheral mu opioid receptor selective antagonists. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4731-4734.	2.2	21
48	Monochloramine directly modulates Ca2+-activated K+ channels in rabbit colonic muscularis mucosae. Gastroenterology, 1999, 117, 906-917.	1.3	20
49	COOH-terminal association of human smooth muscle calcium channel Cav1.2b with Src kinase protein binding domains: effect of nitrotyrosylation. American Journal of Physiology - Cell Physiology, 2007, 293, C1983-C1990.	4.6	17
50	Sex Differences and Drug Dose Influence the Role of the α7 Nicotinic Acetylcholine Receptor in the Mouse Dextran Sodium Sulfate-Induced Colitis Model. Nicotine and Tobacco Research, 2017, 19, 460-468.	2.6	17
51	Characterization of 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(indole-7-carboxamido)morphinan (NAN) as a Novel Opioid Receptor Modulator for Opioid Use Disorder Treatment. ACS Chemical Neuroscience, 2019, 10, 2518-2532.	3.5	17
52	Experimental Colitis Enhances the Rate of Antinociceptive Tolerance to Morphine via Peripheral Opioid Receptors. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 504-513.	2.5	17
53	Design, Synthesis, and Biological Evaluation of the Third Generation 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4′-pyridyl)carboxamido]morphinan (NAP) Derivatives as μ4/κ Opioid Receptor Dual Selective Ligands. Journal of Medicinal Chemistry, 2019, 62, 561-574.	6.4	17
54	Sepiapterin Ameliorates Chemically Induced Murine Colitis and Azoxymethane-Induced Colon Cancer. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 117-125.	2.5	16

#	Article	IF	CITATIONS
55	HIV-1 Tat exacerbates lipopolysaccharide-induced cytokine release via TLR4 signaling in the enteric nervous system. Scientific Reports, 2016, 6, 31203.	3.3	16
56	Ethanol Reversal of Tolerance to the Antinociceptive Effects of Oxycodone and Hydrocodone. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 45-52.	2.5	16
57	α ₇ -nAChR-mediated suppression of hyperexcitability of colonic dorsal root ganglia neurons in experimental colitis. American Journal of Physiology - Renal Physiology, 2010, 299, G761-G768.	3.4	15
58	Colonic inflammation alters Src kinase-dependent gating properties of single Ca ²⁺ channels via tyrosine nitration. American Journal of Physiology - Renal Physiology, 2010, 298, C976-G984.	3.4	14
59	17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-(4′-pyridylcarboxamido)morphinan (NAP) Modulating the Mu Opioid Receptor in a Biased Fashion. ACS Chemical Neuroscience, 2016, 7, 297-304.	3.5	14
60	Protein and gene expression of Ca2+ channel isoforms in murine colon: effect of inflammation. Pflugers Archiv European Journal of Physiology, 2004, 449, 288-97.	2.8	12
61	6Î2-N-Heterocyclic Substituted Naltrexamine Derivative BNAP: A Peripherally Selective Mixed MOR/KOR Ligand. ACS Chemical Neuroscience, 2016, 7, 1120-1129.	3.5	12
62	Culture of Neurons and Smooth Muscle Cells from the Myenteric Plexus of Adult Mice. Methods in Molecular Biology, 2018, 1727, 119-125.	0.9	11
63	Signal-Transduction Pathways that Regulate Smooth Muscle Function II. Receptor-ion channel coupling mechanisms in gastrointestinal smooth muscle. American Journal of Physiology - Renal Physiology, 2005, 288, C598-C602.	3.4	10
64	Role of β-arrestin-2 in short- and long-term opioid tolerance in the dorsal root ganglia. European Journal of Pharmacology, 2021, 899, 174007.	3.5	10
65	Specific Localization of β-Arrestin2 in Myenteric Plexus of Mouse Gastrointestinal Tract. PLoS ONE, 2014, 9, e103894.	2.5	9
66	Acute Colitis Enhances Responsiveness of Lumbosacral Spinal Neurons to Colorectal Distension in Rats. Digestive Diseases and Sciences, 2008, 53, 141-148.	2.3	8
67	Electrophysiological Characteristics of Enteric Neurons Isolated from the Immortomouse. Digestive Diseases and Sciences, 2013, 58, 1516-1527.	2.3	8
68	Increased PDE5 activity and decreased Rho kinase and PKC activities in colonic muscle from caveolin-1 ^{â^'/â^'} mice impair the peristaltic reflex and propulsion. American Journal of Physiology - Renal Physiology, 2013, 305, G964-G974.	3.4	8
69	Calcium Carbonate Antacids Alter Esophageal Motility in Heartburn Sufferers. Digestive Diseases and Sciences, 2004, 49, 1862-1867.	2.3	7
70	Morphine dependence in single enteric neurons from the mouse colon requires deletion of <i>î²</i> -arrestin2. Physiological Reports, 2014, 2, e12140.	1.7	7
71	Oxidative Stress and Ion Channels. , 2014, , 355-373.		7
72	The Cannabinoid Receptor Type 1 Positive Allosteric Modulator ZCZ011 Attenuates Naloxone-Precipitated Diarrhea and Weight Loss in Oxycodone-Dependent Mice. Journal of Pharmacology and Experimental Therapeutics, 2022, 380, 1-14.	2.5	7

#	Article	IF	CITATIONS
73	Sex-specific role for serotonin 5-HT2A receptor in modulation of opioid-induced antinociception and reward in mice. Neuropharmacology, 2022, 209, 108988.	4.1	7
74	Inflammation-Induced "Channelopathies" in the Gastrointestinal Smooth Muscle. Cell Biochemistry and Biophysics, 2004, 41, 319-330.	1.8	6
75	Methylation Products of 6β- <i>N</i> -Heterocyclic Substituted Naltrexamine Derivatives as Potential Peripheral Opioid Receptor Modulators. ACS Chemical Neuroscience, 2018, 9, 3028-3037.	3.5	6
76	The Guts of the Opioid Crisis. Physiology, 2021, 36, 315-323.	3.1	6
77	Reversal of oxycodone and hydrocodone tolerance by diazepam. Brain Research, 2017, 1674, 84-90.	2.2	5
78	Ethanol Reversal of Oxycodone Tolerance in Dorsal Root Ganglia Neurons. Molecular Pharmacology, 2018, 93, 417-426.	2.3	5
79	The "Culture―of Pain Control: A Review of Opioid-Induced Dysbiosis (OID) in Antinociceptive Tolerance. Journal of Pain, 2020, 21, 751-762.	1.4	5
80	Postranslational Modification of Ion Channels in Colonic Inflammation. Current Neuropharmacology, 2015, 13, 234-238.	2.9	5
81	Morphine Exacerbates Experimental Colitis-Induced Depression of Nesting in Mice. Frontiers in Pain Research, 2021, 2, 738499.	2.0	5
82	Nicotine suppresses hyperexcitability of colonic sensory neurons and visceral hypersensivity in mouse model of colonic inflammation. American Journal of Physiology - Renal Physiology, 2012, 302, G740-G747.	3.4	4
83	Enhanced Sensitivity of Â3Â4 Nicotinic Receptors in Enteric Neurons after Long-Term Morphine: Implication for Opioid-Induced Constipation. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 520-528.	2.5	4
84	Nanoconjugated NAP as a Potent and Periphery Selective Mu Opioid Receptor Modulator To Treat Opioid-Induced Constipation. ACS Medicinal Chemistry Letters, 2017, 8, 78-83.	2.8	3
85	Analysis of carbenoxolone by ultraâ€highâ€performance liquid chromatography tandem mass spectrometry in mouse brain and blood after systemic administration. Biomedical Chromatography, 2019, 33, e4465.	1.7	3
86	Chronic Morphine Induces IL-18 in lleum Myenteric Plexus Neurons Through Mu-opioid Receptor Activation in Cholinergic and VIPergic Neurons. Journal of NeuroImmune Pharmacology, 2022, 17, 111-130.	4.1	3
87	Sex Differences and Drug Dose Influence the Role of the α-7 Nicotinic Acetylcholine Receptor in the Mouse Dextran Sodium Sulfate-Induced Colitis Model. American Journal of Gastroenterology, 2015, 110, S776.	0.4	2
88	Colonic Supernatants from Chronic Morphine Exposed Mice Induce Morphine Tolerance in NaÃ ⁻ ve Dorsal Root Ganglion Neurons that is Mitigated by Oral Vancomycin Delivery. Gastroenterology, 2017, 152, S730.	1.3	2
89	Methylnaltrexone crosses the blood-brain barrier and attenuates centrally-mediated behavioral effects of morphine and oxycodone in mice. Neuropharmacology, 2021, 185, 108437.	4.1	2
90	Electrophysiological Characterization Of Purinergic Receptors In Mouse Enteric Neuronâ€Glia Culture. FASEB Journal, 2013, 27, 1093.24.	0.5	2

#	Article	IF	CITATIONS
91	ATP-sensitive K+ channel demonstrates enhanced bursting activity in a murine experimental colitis model. Gastroenterology, 2003, 124, A138.	1.3	1
92	Mo1578 - The Effect of a G-Protein Biased Ligand, TRV130, on Opioid-Induced Constipation. Gastroenterology, 2018, 154, S-758.	1.3	1
93	Editorial: The Gut Microbiota Orchestrates the Neuronal-Immune System. Frontiers in Cell and Developmental Biology, 2021, 9, 672685.	3.7	1
94	The Role of Tollâ€Like Receptor 4 in Enteric Glia. FASEB Journal, 2015, 29, 628.6.	0.5	1
95	Sympathetic Sprouting in Rat Thoracolumbar Dorsal Root Ganglia During Colitis. Gastroenterology, 2011, 140, S-537.	1.3	0
96	Prolonged Opioid Use Increases Risk of Surgical Complications of Diverticular Disease in Patients with Colorectal Cancer. American Journal of Gastroenterology, 2016, 111, S96.	0.4	0
97	Su1940 The Role of the Gastrointestinal Microbiota in Opioid-Induced Analgesic Tolerance. Gastroenterology, 2016, 150, S594-S595.	1.3	0
98	Su1955 Characterization of Calcium Ion Channels in DRG Neurons Regulated by BDNF and Colitis. Gastroenterology, 2016, 150, S598.	1.3	0
99	μ-Opioid Receptors Co-Expressed in Cholinergic Neurons of Mouse lleum Myenteric Plexus Develop Tolerance to Chronic Morphine Exposure. Gastroenterology, 2017, 152, S710.	1.3	0
100	The instantaneous component of HCN currents is selectively blocked by C. difficile Toxin B in rat L6â€ 5 2 DRG. FASEB Journal, 2006, 20, .	0.5	0
101	Impaired câ€src kinase regulation of muscle contraction during colonic inflammation is due to nitrosylation of Ca ²⁺ channels. FASEB Journal, 2007, 21, A1156.	0.5	0
102	Denitrase activity of macrophages reverses nitrosylation of smooth muscle calcium channel. FASEB Journal, 2008, 22, 937.24.	0.5	0
103	Morphineâ€induced tolerance and dependence develops in the mouse isolated ileum but not colon. FASEB Journal, 2008, 22, 712.15.	0.5	0
104	Gâ€protein coupled receptor kinase 2(GRK2) is involved in μâ€receptor signaling in the mouse ileum but not colon. FASEB Journal, 2008, 22, 712.11.	0.5	0
105	The identification of μ opioid receptors on colonic circular smooth muscle cells. FASEB Journal, 2008, 22, 712.9.	0.5	0
106	Morphine induced tolerance to mouse intestinal but not colonic transit and constipation. FASEB Journal, 2008, 22, 712.14.	0.5	0
107	Tyrosine nitration of Lâ€ŧype Ca channels prevents activation of the cyclic AMP Response Element (CRE). FASEB Journal, 2009, 23, 1000.20.	0.5	0
108	The effect of morphine on a K+ channel from a murine enteric neuron cell line derived from the Hâ€2kbâ€ŧsA58 mouse. FASEB Journal, 2009, 23, 580.3.	0.5	0

#	Article	IF	CITATIONS
109	Electrophysiological characterization of postnatal enteric neuron cell line. FASEB Journal, 2010, 24, 969.5.	0.5	0
110	Alterations in βâ€errestin expression in guineaâ€pig ileum and colon following morphine tolerance. FASEB Journal, 2010, 24, 583.6.	0.5	0
111	Src kinaseâ€dependent gating properties of single Ca 2+ channels are altered by tyrosine nitration in colitis. FASEB Journal, 2010, 24, 770.9.	0.5	Ο
112	Electrophysiological characteristics of enteric neurons from immortomouse. FASEB Journal, 2011, 25, 1081.1.	0.5	0
113	Enteric neurons of the adult mouse; successful isolation through immunoselection and immunocytochemical and electrophysiological characterization. FASEB Journal, 2011, 25, 1081.2.	0.5	Ο
114	Enhanced relaxant effect of Sodium Hydrogen Sulfide (NaHS) in Experimental Colitis and its action on KATP Channels via Sâ€sulfhydration. FASEB Journal, 2012, 26, 1048.14.	0.5	0
115	Morphine decreases neuronal excitability in mouse enteric neurons via alterations in Na+ channel kinetics. FASEB Journal, 2012, 26, 1123.5.	0.5	Ο
116	Differential development of tolerance to μâ€opioid receptor agonists in the mouse colon. FASEB Journal, 2012, 26, 1041.1.	0.5	0
117	Hydrogen Sulfide as an allosteric modulator of ATP sensitive potassium channels in experimental colitis. FASEB Journal, 2012, 26, .	0.5	Ο
118	Redox regulation of the K ATP channel complex in colonic inflammation. FASEB Journal, 2013, 27, 1093.32.	0.5	0
119	Effects of HIVâ€1 tat protein on excitability of enteric neurons. FASEB Journal, 2013, 27, 664.5.	0.5	О
120	βâ€arrestin2 expression is localized in cholinergic but not nitrergic motor neurons in the mouse longitudinal musclemyenteric plexus (LMMP). FASEB Journal, 2013, 27, 879.10.	0.5	0
121	Chronic but Not Acute Exposure to Morphine Enhances nAChR Mediated Responses in Enteric Neurons. FASEB Journal, 2015, 29, 628.12.	0.5	0
122	HIVâ€∃ Tat Sensitizes Enteric Neurons to Bacterial Proteins. FASEB Journal, 2015, 29, 628.13.	0.5	0
123	The Effect of Colonic Inflammation on Morphine Induced Antinociceptive Tolerance. FASEB Journal, 2018, 32, 701.12.	0.5	0
124	Assessing Opioid Tolerance Mechanisms in an Isolated Murine Dorsal Root Ganglia Neuron Model. FASEB Journal, 2018, 32, 683.8.	0.5	0
125	Reversal of the Development of Antinociceptive Effects to Chronic Morphine in Mice by Fecal Microbiota Transplantation (FMT). FASEB Journal, 2019, 33, lb80.	0.5	0
126	Monoacylglycerol Lipase Inhibition: A Strategy to Treat Chronic Pain in a Humanized Sickle Cell Mouse Model. Blood, 2021, 138, 956-956.	1.4	0

#	Article	IF	CITATIONS
127	Distinct Mechanisms of Morphine Tolerance in Enteric Neurons and Dorsal Root Ganglia Neurons: Role of βâ€∎rrestinâ€⊋. FASEB Journal, 2022, 36, .	0.5	0