John A Cidlowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7860704/publications.pdf

Version: 2024-02-01

362 papers 40,254 citations

99 h-index 189 g-index

368 all docs

368 docs citations

368 times ranked 41116 citing authors

#	Article	IF	CITATIONS
1	Chronic restraint stress produces sex-specific behavioral and molecular outcomes in the dorsal and ventral rat hippocampus. Neurobiology of Stress, 2022, 17, 100440.	4.0	14
2	Regulation of the Intestinal Extra-Adrenal Steroidogenic Pathway Component LRH-1 by Glucocorticoids in Ulcerative Colitis. Cells, 2022, 11, 1905.	4.1	3
3	Deletion of hippocampal Glucocorticoid receptors unveils sex-biased microRNA expression and neuronal morphology alterations in mice. Neurobiology of Stress, 2021, 14, 100306.	4.0	8
4	Glucocorticoids as Regulators of Macrophage-Mediated Tissue Homeostasis. Frontiers in Immunology, 2021, 12, 669891.	4.8	26
5	Tristetraprolin Prevents Gastric Metaplasia in Mice by Suppressing Pathogenic Inflammation. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1831-1845.	4.5	4
6	Glucocorticoids and Androgens Protect From Gastric Metaplasia by Suppressing Group 2 Innate Lymphoid Cell Activation. Gastroenterology, 2021, 161, 637-652.e4.	1.3	25
7	Sex-Dependent Changes of miRNA Levels in the Hippocampus of Adrenalectomized Rats Following Acute Corticosterone Administration. ACS Chemical Neuroscience, 2021, 12, 2981-3001.	3.5	7
8	Glucocorticoid Inhibition of Estrogen Regulation of the Serotonin Receptor 2B in Cardiomyocytes Exacerbates Cell Death in Hypoxia/Reoxygenation Injury. Journal of the American Heart Association, 2021, 10, e015868.	3.7	5
9	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	5.4	183
10	3C. 3-Ketosteroid receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
11	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Nuclear hormone receptors. British Journal of Pharmacology, 2021, 178, S246-S263.	5.4	100
12	Combinatorial actions of glucocorticoid and mineralocorticoid stress hormone receptors are required for preventing neurodegeneration of the mouse hippocampus. Neurobiology of Stress, 2021, 15, 100369.	4.0	11
13	Intestinal epithelial glucocorticoid receptor promotes chronic inflammation–associated colorectal cancer. JCI Insight, 2021, 6, .	5.0	9
14	After 62 years of regulating immunity, dexamethasone meets COVID-19. Nature Reviews Immunology, 2020, 20, 587-588.	22.7	108
15	lons, the Movement of Water and the Apoptotic Volume Decrease. Frontiers in Cell and Developmental Biology, 2020, 8, 611211.	3.7	36
16	Glucocorticoid receptors are required effectors of $TGF\hat{l}^21$ -induced p38 MAPK signaling to advanced cancer phenotypes in triple-negative breast cancer. Breast Cancer Research, 2020, 22, 39.	5.0	29
17	Murine Glucocorticoid Receptors Orchestrate B Cell Migration Selectively between Bone Marrow and Blood. Journal of Immunology, 2020, 205, 619-629.	0.8	20
18	Coordinate expression loss of GKN1 and GKN2 in gastric cancer via impairment of a glucocorticoid-responsive enhancer. American Journal of Physiology - Renal Physiology, 2020, 319, G175-G188.	3.4	5

#	Article	lF	Citations
19	Glucocorticoid Signaling and the Aging Heart. Frontiers in Endocrinology, 2020, 11, 347.	3.5	18
20	Protein phosphatase 1 alpha enhances glucocorticoid receptor activity by a mechanism involving phosphorylation of serine-211. Molecular and Cellular Endocrinology, 2020, 518, 110873.	3.2	5
21	Glucocorticoids mobilize macrophages by transcriptionally up-regulating the exopeptidase DPP4. Journal of Biological Chemistry, 2020, 295, 3213-3227.	3.4	26
22	Steroid Hormone Action., 2019, , 115-131.e4.		11
23	Deletion of the Cardiomyocyte Glucocorticoid Receptor Leads to Sexually Dimorphic Changes in Cardiac Gene Expression and Progression to Heart Failure. Journal of the American Heart Association, 2019, 8, e011012.	3.7	24
24	Glucocorticoids preserve the t-tubular system in ventricular cardiomyocytes by upregulation of autophagic flux. Basic Research in Cardiology, 2019, 114, 47.	5.9	27
25	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 2019, 176, S229-S246.	5.4	127
26	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	5 . 4	295
27	\hat{l}^2 -Arrestin-1 inhibits glucocorticoid receptor turnover and alters glucocorticoid signaling. Journal of Biological Chemistry, 2019, 294, 11225-11239.	3.4	9
28	Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice. Science Signaling, 2019, 12, .	3.6	75
29	Silencing of maternal hepatic glucocorticoid receptor is essential for normal fetal development in mice. Communications Biology, 2019, 2, 104.	4.4	9
30	Inhibition of miR-378a-3p by Inflammation Enhances IL-33 Levels: A Novel Mechanism of Alarmin Modulation in Ulcerative Colitis. Frontiers in Immunology, 2019, 10, 2449.	4.8	37
31	Endogenous glucocorticoids prevent gastric metaplasia by suppressing spontaneous inflammation. Journal of Clinical Investigation, 2019, 129, 1345-1358.	8.2	28
32	Betaâ€arrestin 1: A novel partner in the regulation of the glucocorticoid receptor activity. FASEB Journal, 2019, 33, 476.22.	0.5	0
33	3C. 3-Ketosteroid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
34	Estrogen Deficiency Promotes Hepatic Steatosis via a Glucocorticoid Receptor-Dependent Mechanism in Mice. Cell Reports, 2018, 22, 2690-2701.	6.4	68
35	Probing Dominant Negative Behavior of Glucocorticoid Receptor $\langle i \rangle \hat{l}^2 \langle i \rangle$ through a Hybrid Structural and Biochemical Approach. Molecular and Cellular Biology, 2018, 38, .	2.3	8
36	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036

#	Article	IF	Citations
37	Glucocorticoid receptor signaling in the eye. Steroids, 2018, 133, 60-66.	1.8	50
38	Neonatal Genistein Exposure and Glucocorticoid Signaling in the Adult Mouse Uterus. Environmental Health Perspectives, 2018, 126, 047002.	6.0	6
39	Glucocorticoid Receptor Mutations and Hypersensitivity to Endogenous and Exogenous Glucocorticoids. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3630-3639.	3.6	19
40	Muscle-specific regulation of right ventricular transcriptional responses to chronic hypoxia-induced hypertrophy by the muscle ring finger-1 (MuRF1) ubiquitin ligase in mice. BMC Medical Genetics, 2018, 19, 175.	2.1	1
41	Glucocorticoid receptor isoformâ€specific regulation of development, circadian rhythm, and inflammation in mice. FASEB Journal, 2018, 32, 5258-5271.	0.5	20
42	MicroRNA Profiling and Bioinformatics Target Analysis in Dorsal Hippocampus of Chronically Stressed Rats: Relevance to Depression Pathophysiology. Frontiers in Molecular Neuroscience, 2018, 11, 251.	2.9	24
43	Glucocorticoids Impair Phagocytosis and Inflammatory Response Against Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Frontiers in Immunology, 2018, 9, 1026.	4.8	24
44	Taxol Induces Brk-dependent Prosurvival Phenotypes in TNBC Cells through an AhR/GR/HIF–driven Signaling Axis. Molecular Cancer Research, 2018, 16, 1761-1772.	3.4	15
45	Pharmacology of Corticosteroids for Diabetic Macular Edema. , 2018, 59, 1.		90
46	Glucocorticoids: Molecular Mechanisms of Action. , 2018, , 249-266.		5
47	Gene Expression Profiling of Retinal Pigment Epithelium Establish a Diverse Role of Glucocorticoids in the Eye. FASEB Journal, 2018, 32, 826.5.	0.5	0
48	Muscleâ€specific regulation of right ventricular transcriptional responses to chronic hypoxia induced heart failure by the Muscle Ring Fingerâ€1 (MuRF1) ubiquitin ligase ⟨i⟩in vivo⟨/i⟩. FASEB Journal, 2018, 32, 287.2.	0.5	0
49	Cross-talk between the glucocorticoid receptor and MyoD family inhibitor domain-containing protein provides a new mechanism for generating tissue-specific responses to glucocorticoids. Journal of Biological Chemistry, 2017, 292, 5825-5844.	3.4	17
50	Glucocorticoids and Reproduction: Traffic Control on the Road to Reproduction. Trends in Endocrinology and Metabolism, 2017, 28, 399-415.	7.1	125
51	Immune regulation by glucocorticoids. Nature Reviews Immunology, 2017, 17, 233-247.	22.7	1,101
52	Mechanisms of Glucocorticoid Action During Development. Current Topics in Developmental Biology, 2017, 125, 147-170.	2.2	105
53	Glucocorticoids: Inflammation and Immunity. , 2017, , 43-63.		8
54	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Nuclear hormone receptors. British Journal of Pharmacology, 2017, 174, S208-S224.	5.4	131

#	Article	IF	Citations
55	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	5.4	269
56	Pioneer Factors FOXA1 and FOXA2 Assist Selective Glucocorticoid Receptor Signaling in Human Endometrial Cells. Endocrinology, 2017, 158, 4076-4092.	2.8	14
57	A functional IL1RL1 variant regulates corticosteroid-induced sST2 expression in ulcerative colitis. Scientific Reports, 2017, 7, 10180.	3.3	10
58	Generating diversity in human glucocorticoid signaling through a racially diverse polymorphism in the beta isoform of the glucocorticoid receptor. Laboratory Investigation, 2017, 97, 1282-1295.	3.7	5
59	LPS regulates the expression of glucocorticoid receptor \hat{l}_{\pm} and \hat{l}^{2} isoforms and induces a selective glucocorticoid resistance in vitro. Journal of Inflammation, 2017, 14, 22.	3.4	10
60	MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene, 2016, 35, 6189-6202.	5.9	79
61	Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye. Experimental Eye Research, 2016, 152, 10-33.	2.6	38
62	$Kr\tilde{A}\frac{1}{4}$ ppel-like Factor 13 Is a Major Mediator of Glucocorticoid Receptor Signaling in Cardiomyocytes and Protects These Cells from DNA Damage and Death. Journal of Biological Chemistry, 2016, 291, 19374-19386.	3.4	30
63	Healthy glucocorticoid receptor N363S carriers dysregulate gene expression associated with metabolic syndrome. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E741-E748.	3.5	13
64	Corticosteroids Are Essential for Maintaining Cardiovascular Function in Male Mice. Endocrinology, 2016, 157, 2759-2771.	2.8	35
65	T-cell development of resistance to apoptosis is driven by a metabolic shift in carbon source and altered activation of death pathways. Cell Death and Differentiation, 2016, 23, 889-902.	11.2	4
66	Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Research, 2016, 76, 1653-1663.	0.9	41
67	Human Glucocorticoid Receptor \hat{l}^2 Regulates Gluconeogenesis and Inflammation in Mouse Liver. Molecular and Cellular Biology, 2016, 36, 714-730.	2.3	50
68	Corticosteroids. Rheumatic Disease Clinics of North America, 2016, 42, 15-31.	1.9	436
69	Endogenous hepatic glucocorticoid receptor signaling coordinates sexâ€biased inflammatory gene expression. FASEB Journal, 2016, 30, 971-982.	0.5	45
70	Glucocorticoid Receptors, Their Mechanisms of Action, and Glucocorticoid Resistance. , 2016, , 1717-1726.e4.		1
71	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220
72	The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 2015, 172, 5956-5978.	5.4	119

#	Article	IF	CITATIONS
73	Glucocorticoid signaling in the heart: A cardiomyocyte perspective. Journal of Steroid Biochemistry and Molecular Biology, 2015, 153, 27-34.	2.5	102
74	Uterine glucocorticoid receptors are critical for fertility in mice through control of embryo implantation and decidualization. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15166-15171.	7.1	66
75	Specificity and sensitivity of glucocorticoid signaling in health and disease. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 545-556.	4.7	104
76	Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease. Stress, 2015, 18, 367-380.	1.8	70
77	Genistein Disrupts Glucocorticoid Receptor Signaling in Human Uterine Endometrial Ishikawa Cells. Environmental Health Perspectives, 2015, 123, 80-87.	6.0	12
78	One Hormone, Two Actions: Anti- and Pro-Inflammatory Effects of Glucocorticoids. NeuroImmunoModulation, 2015, 22, 20-32.	1.8	338
79	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	11.2	811
80	Steroid Hormone Action., 2014,, 93-107.e3.		1
81	Sexually dimorphic actions of glucocorticoids: beyond chromosomes and sex hormones. Annals of the New York Academy of Sciences, 2014, 1317, 1-6.	3.8	48
82	Adverse Consequences of Glucocorticoid Medication: Psychological, Cognitive, and Behavioral Effects. American Journal of Psychiatry, 2014, 171, 1045-1051.	7.2	168
83	Glutathione depletion regulates both extrinsic and intrinsic apoptotic signaling cascades independent from multidrug resistance protein 1. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 117-134.	4.9	13
84	lon channels and apoptosis in cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130104.	4.0	103
85	Analysis of Glucocorticoid Receptors and Their Apoptotic Response to Dexamethasone in Male Murine B Cells During Development. Endocrinology, 2014, 155, 463-474.	2.8	70
86	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	16.0	189
87	Estradiol Antagonism of Glucocorticoid-Induced GILZ Expression in Human Uterine Epithelial Cells and Murine Uterus. Endocrinology, 2013, 154, 499-510.	2.8	40
88	Glucocorticoid receptor signaling in health and disease. Trends in Pharmacological Sciences, 2013, 34, 518-530.	8.7	626
89	The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. Journal of Allergy and Clinical Immunology, 2013, 132, 1033-1044.	2.9	796
90	Essential role of stress hormone signaling in cardiomyocytes for the prevention of heart disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17035-17040.	7.1	101

#	Article	lF	Citations
91	Tissue-Specific Actions of Glucocorticoids on Apoptosis: A Double-Edged Sword. Cells, 2013, 2, 202-223.	4.1	115
92	HES1 Is a Master Regulator of Glucocorticoid Receptor–Dependent Gene Expression. Science Signaling, 2013, 6, ra103.	3.6	37
93	A Role for Glucocorticoids in Stress-Impaired Reproduction: Beyond the Hypothalamus and Pituitary. Endocrinology, 2013, 154, 4450-4468.	2.8	147
94	Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans. Blood, 2013, 121, 1553-1562.	1.4	63
95	The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends in Endocrinology and Metabolism, 2013, 24, 109-119.	7.1	267
96	Exploring the Molecular Mechanisms of Glucocorticoid Receptor Action from Sensitivity to Resistance. Endocrine Development, 2013, 24, 41-56.	1.3	106
97	Ligand-Induced Repression of the Glucocorticoid Receptor Gene Is Mediated by an NCoR1 Repression Complex Formed by Long-Range Chromatin Interactions with Intragenic Glucocorticoid Response Elements. Molecular and Cellular Biology, 2013, 33, 1711-1722.	2.3	122
98	Global Gene Expression Analysis in Human Uterine Epithelial Cells Defines New Targets of Glucocorticoid and Estradiol Antagonism1. Biology of Reproduction, 2013, 89, 66.	2.7	39
99	Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes. Cell Death and Disease, 2013, 4, e453-e453.	6.3	49
100	Deep Sequencing Identification of Novel Glucocorticoid-Responsive miRNAs in Apoptotic Primary Lymphocytes. PLoS ONE, 2013, 8, e78316.	2.5	14
101	Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome Journal of Biological Chemistry, 2012, 287, 13559.	3.4	2
102	Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17591-17596.	7.1	42
103	Osmotic Stress Resistance Imparts Acquired Anti-apoptotic Mechanisms in Lymphocytes. Journal of Biological Chemistry, 2012, 287, 6284-6295.	3.4	18
104	Complex Human Glucocorticoid Receptor dim Mutations Define Glucocorticoid Induced Apoptotic Resistance in Bone Cells. Molecular Endocrinology, 2012, 26, 244-256.	3.7	58
105	Proinflammatory Actions of Glucocorticoids: Glucocorticoids and TNFα Coregulate Gene Expression In Vitro and In Vivo. Endocrinology, 2012, 153, 3701-3712.	2.8	7 5
106	Dual Role for Glucocorticoids in Cardiomyocyte Hypertrophy and Apoptosis. Endocrinology, 2012, 153, 5346-5360.	2.8	106
107	Glutathione Efflux and Cell Death. Antioxidants and Redox Signaling, 2012, 17, 1694-1713.	5.4	186
108	Glucocorticoids Regulate Gene Expression and Repress Cellular Proliferation in Human Uterine Leiomyoma Cells. Hormones and Cancer, 2012, 3, 79-92.	4.9	32

#	Article	IF	Citations
109	Phosphatidylinositol 3-kinase interacts with the glucocorticoid receptor upon TLR2 activation. Journal of Cellular and Molecular Medicine, 2011, 15, 339-349.	3.6	19
110	Glucocorticoid Receptor \hat{l}_{\pm} Isoform-Selective Regulation of Antiapoptotic Genes in Osteosarcoma Cells: A New Mechanism for Glucocorticoid Resistance. Molecular Endocrinology, 2011, 25, 1087-1099.	3.7	46
111	Life and Death of Lymphocytes: A Volume Regulation Affair. Cellular Physiology and Biochemistry, 2011, 28, 1079-1088.	1.6	20
112	Glucocorticoids Sensitize the Innate Immune System through Regulation of the NLRP3 Inflammasome. Journal of Biological Chemistry, 2011, 286, 38703-38713.	3.4	199
113	Ligand-Independent Phosphorylation of the Glucocorticoid Receptor Integrates Cellular Stress Pathways with Nuclear Receptor Signaling. Molecular and Cellular Biology, 2011, 31, 4663-4675.	2.3	128
114	Cellular Processing of the Glucocorticoid Receptor Gene and Protein: New Mechanisms for Generating Tissue-specific Actions of Glucocorticoids. Journal of Biological Chemistry, 2011, 286, 3177-3184.	3.4	300
115	Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 834-849.	4.9	27
116	Generating diversity in glucocorticoid receptor signaling: mechanisms, receptor isoforms, and post-translational modifications. Hormone Molecular Biology and Clinical Investigation, 2010, 3, 319-28.	0.7	5
117	Glucocorticoid signaling in cardiac disease. Hormone Molecular Biology and Clinical Investigation, 2010, 4, 559-64.	0.7	2
118	Glucocorticoids Modulate MicroRNA Expression and Processing during Lymphocyte Apoptosis. Journal of Biological Chemistry, 2010, 285, 36698-36708.	3.4	81
119	Sexually Dimorphic Actions of Glucocorticoids Provide a Link to Inflammatory Diseases with Gender Differences in Prevalence. Science Signaling, 2010, 3, ra74.	3.6	152
120	Glucocorticoid-Induced Apoptosis of Healthy and Malignant Lymphocytes. Progress in Brain Research, 2010, 182, 1-30.	1.4	110
121	The Glucocorticoid Receptor., 2010,, 63-89.		0
122	Lysine 419 targets human glucocorticoid receptor for proteasomal degradation. Steroids, 2010, 75, 1016-1023.	1.8	42
123	Reciprocal epigenetic modification of histone H2B occurs in chromatin during apoptosis in vitro and in vivo. Cell Death and Differentiation, 2010, 17, 984-993.	11.2	28
124	Glucocorticoid Receptors., 2010,, 1820-1830.		0
125	Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life, 2009, 61, 979-986.	3.4	154
126	Apoptosis and glutathione: beyond an antioxidant. Cell Death and Differentiation, 2009, 16, 1303-1314.	11.2	582

#	Article	IF	CITATIONS
127	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	11.2	599
128	Mechanisms Generating Diversity in Glucocorticoid Receptor Signaling. Annals of the New York Academy of Sciences, 2009, 1179, 167-178.	3.8	169
129	Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Molecular and Cellular Endocrinology, 2009, 300, 7-16.	3.2	161
130	GLUCOCORTICOIDS AND THEIR ACTIONS IN CELLS. Retina, 2009, 29, S21-S23.	1.7	10
131	Protein glutathionylation regulates FasLâ€induced apoptosis FASEB Journal, 2009, 23, 526.17.	0.5	0
132	An endogenous calcium-dependent, caspase-independent intranuclear degradation pathway in thymocyte nuclei: Antagonism by physiological concentrations of K+ ions. Experimental Cell Research, 2008, 314, 1237-1249.	2.6	17
133	Tissue-specific glucocorticoid action: a family affair. Trends in Endocrinology and Metabolism, 2008, 19, 331-339.	7.1	169
134	Glutathione Depletion and Disruption of Intracellular Ionic Homeostasis Regulate Lymphoid Cell Apoptosis. Journal of Biological Chemistry, 2008, 283, 36071-36087.	3.4	51
135	Cationic Gradient Reversal and Cytoskeleton-independent Volume Regulatory Pathways Define an Early Stage of Apoptosis. Journal of Biological Chemistry, 2008, 283, 7219-7229.	3.4	62
136	Glycogen Synthase Kinase 3β-Mediated Serine Phosphorylation of the Human Glucocorticoid Receptor Redirects Gene Expression Profiles. Molecular and Cellular Biology, 2008, 28, 7309-7322.	2.3	113
137	Digital Image Integrity and RIGOUR. Molecular Endocrinology, 2008, 22, 225-225.	3.7	1
138	DAX-1 (Dosage-Sensitive Sex Reversal-Adrenal Hypoplasia Congenita Critical Region on the) Tj ETQq0 0 0 rgBT /C Glucocorticoid Receptor in a LXXLL-Dependent Manner. Molecular Endocrinology, 2008, 22, 1521-1534.	verlock 10 3.7) Tf 50 307 To 21
139	Molecular Evidence for a Link between the N363S Glucocorticoid Receptor Polymorphism and Altered Gene Expression. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3268-3277.	3.6	50
140	Selective Regulation of Bone Cell Apoptosis by Translational Isoforms of the Glucocorticoid Receptor. Molecular and Cellular Biology, 2007, 27, 7143-7160.	2.3	132
141	Human Glucocorticoid Receptor \hat{l}^2 Binds RU-486 and Is TranscriptionallyActive. Molecular and Cellular Biology, 2007, 27, 2266-2282.	2.3	152
142	Cell shrinkage and monovalent cation fluxes: Role in apoptosis. Archives of Biochemistry and Biophysics, 2007, 462, 176-188.	3.0	227
143	Glutathione Depletion Is Necessary for Apoptosis in Lymphoid Cells Independent of Reactive Oxygen Species Formation. Journal of Biological Chemistry, 2007, 282, 30452-30465.	3.4	235
144	New Approaches for Determining Apoptotic Volume Decrease in Cells. Methods in Enzymology, 2007, 428, 161-181.	1.0	15

#	Article	IF	Citations
145	Glucocorticoid Signaling in Health and Disease. NeuroImmune Biology, 2007, 7, 33-53.	0.2	2
146	Glucocorticoids and Immunity: Mechanisms of Regulation. , 2007, , 45-61.		4
147	Glucocorticoids inhibit the apoptotic actions of UV-C but not Fas ligand in hepatoma cells: direct evidence for a critical role of Bcl-xL. Cell Death and Differentiation, 2007, 14, 840-850.	11.2	19
148	Functional analysis of the LXXLL motifs of the human glucocorticoid receptor: Association with altered ligand affinity. Journal of Steroid Biochemistry and Molecular Biology, 2006, 101, 106-117.	2.5	16
149	Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. Journal of Steroid Biochemistry and Molecular Biology, 2006, 102, 11-21.	2.5	222
150	Research Resource Articles—A New Feature for Molecular Endocrinology. Molecular Endocrinology, 2006, 20, 1971-1971.	3.7	0
151	On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up?. Acta Physiologica, 2006, 187, 205-215.	3.8	63
152	The Physiology of Human Glucocorticoid Receptor \hat{l}^2 (hGR \hat{l}^2) and Glucocorticoid Resistance. Annals of the New York Academy of Sciences, 2006, 1069, 1-9.	3.8	198
153	Potential Roles of Electrogenic Ion Transport and Plasma Membrane Depolarization in Apoptosis. Journal of Membrane Biology, 2006, 209, 43-58.	2.1	95
154	Glucocorticoid receptor isoforms generate transcription specificity. Trends in Cell Biology, 2006, 16, 301-307.	7.9	208
155	Estrogens and Glucocorticoids Have Opposing Effects on the Amount and Latent Activity of Complement Proteins in the Rat Uterus. Biology of Reproduction, 2006, 74, 265-274.	2.7	30
156	Selective Role of Intracellular Chloride in the Regulation of the Intrinsic but Not Extrinsic Pathway of Apoptosis in Jurkat T-cells. Journal of Biological Chemistry, 2006, 281, 2232-2241.	3.4	58
157	International Union of Pharmacology. LXV. The Pharmacology and Classification of the Nuclear Receptor Superfamily: Glucocorticoid, Mineralocorticoid, Progesterone, and Androgen Receptors. Pharmacological Reviews, 2006, 58, 782-797.	16.0	350
158	SLCO/OATP-like Transport of Glutathione in FasL-induced Apoptosis. Journal of Biological Chemistry, 2006, 281, 29542-29557.	3.4	92
159	CD38 Expression Is Insensitive to Steroid Action in Cells Treated with Tumor Necrosis Factor- \hat{l}^{\pm} and Interferon- \hat{l}^{3} by a Mechanism Involving the Up-Regulation of the Glucocorticoid Receptor \hat{l}^{2} Isoform. Molecular Pharmacology, 2006, 69, 588-596.	2.3	106
160	Glucocorticoids Regulate Tristetraprolin Synthesis and Posttranscriptionally Regulate Tumor Necrosis Factor Alpha Inflammatory Signaling. Molecular and Cellular Biology, 2006, 26, 9126-9135.	2.3	149
161	Glutathione efflux through an SLCO/OATPâ€like transporter is necessary for the progression of FasLâ€induced apoptosis in Jurkat cells. FASEB Journal, 2006, 20, A121.	0.5	0
162	Molecular Endocrinology: Today and Tomorrow. Molecular Endocrinology, 2006, 20, 1200-1200.	3.7	0

#	Article	IF	Citations
163	Ligand-Selective Targeting of the Glucocorticoid Receptor to Nuclear Subdomains Is Associated with Decreased Receptor Mobility. Molecular Endocrinology, 2005, 19, 1501-1515.	3.7	53
164	Translational Regulatory Mechanisms Generate N-Terminal Glucocorticoid Receptor Isoforms with Unique Transcriptional Target Genes. Molecular Cell, 2005, 18, 331-342.	9.7	391
165	The human glucocorticoid receptor: One gene, multiple proteins and diverse responses. Steroids, 2005, 70, 407-417.	1.8	327
166	Antiinflammatory Action of Glucocorticoids â€" New Mechanisms for Old Drugs. New England Journal of Medicine, 2005, 353, 1711-1723.	27.0	2,564
167	Glucocorticoids and Tumor Necrosis Factor Alpha Cooperatively Regulate Toll-Like Receptor 2 Gene Expression. Molecular and Cellular Biology, 2004, 24, 4743-4756.	2.3	165
168	A Single Amino Acid Change in the First Zinc Finger of the DNA Binding Domain of the Glucocorticoid Receptor Regulates Differential Promoter Selectivity. Journal of Biological Chemistry, 2004, 279, 39279-39288.	3.4	16
169	Expression of glucocorticoid receptors and in steroid sensitive and steroid insensitive interstitial lung diseases. Thorax, 2004, 59, 687-693.	5.6	43
170	Mechanisms of glucocorticoid receptor signaling during inflammation. Mechanisms of Ageing and Development, 2004, 125, 697-706.	4.6	343
171	The Origin and Functions of Multiple Human Glucocorticoid Receptor Isoforms. Annals of the New York Academy of Sciences, 2004, 1024, 102-123.	3.8	170
172	The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pflugers Archiv European Journal of Physiology, 2004, 448, 313-318.	2.8	138
173	Mechanisms of Glucocorticoid Receptor Action in Noninflammatory and Inflammatory Cells. Proceedings of the American Thoracic Society, 2004, 1, 239-246.	3.5	165
174	Activation of intrinsic and extrinsic pathways in apoptotic signaling during UV-C-induced death of Jurkat cells: the role of caspase inhibition. Experimental Cell Research, 2004, 297, 212-223.	2.6	58
175	Apoptosis and Cell Volume Regulation. , 2004, , 189-203.		18
176	Apoptosis and cell volume regulation: the importance of ions and ion channels. Advances in Experimental Medicine and Biology, 2004, 559, 189-203.	1.6	8
177	Putting the Brake on Inflammatory Responses: the Role of Glucocorticoids. IUBMB Life, 2003, 55, 497-504.	3.4	51
178	Molecular evidence for the nuclear localization of FADD. Cell Death and Differentiation, 2003, 10, 791-797.	11.2	93
179	Development of a flow cytometric assay to study glucocorticoid receptor-mediated gene activation in living cells. Steroids, 2003, 68, 341-350.	1.8	17
180	Very low levels of the glucocorticoid receptor \hat{l}^2 isoform in the human hippocampus as shown by Taqman RT-PCR and immunocytochemistry. Molecular Brain Research, 2003, 116, 17-26.	2.3	45

#	Article	IF	CITATIONS
181	Crystallization of the human glucocorticoid receptor ligand binding domain: a step towards selective glucocorticoids. Trends in Pharmacological Sciences, 2003, 24, 58-61.	8.7	28
182	Dexamethasone blocks the rapid biological effects of $17\hat{l}^2\hat{a}$ estradiol in the rat uterus without antagonizing its global genomic actions. FASEB Journal, 2003, 17, 1849-1870.	0.5	69
183	Molecular Origins for the Dominant Negative Function of Human Glucocorticoid Receptor Beta. Molecular and Cellular Biology, 2003, 23, 4319-4330.	2.3	152
184	Uncoupling Cell Shrinkage from Apoptosis Reveals That Na+ Influx Is Required for Volume Loss during Programmed Cell Death. Journal of Biological Chemistry, 2003, 278, 39176-39184.	3.4	173
185	Stimulation of Kv1.3 Potassium Channels by Death Receptors during Apoptosis in Jurkat T Lymphocytes. Journal of Biological Chemistry, 2003, 278, 33319-33326.	3.4	71
186	Molecular Determinants of Glucocorticoid Receptor Mobility in Living Cells: the Importance of Ligand Affinity. Molecular and Cellular Biology, 2003, 23, 1922-1934.	2.3	165
187	Phosphorylation status modulates Bclâ€2 function during glucocorticoidâ€induced apoptosis in T lymphocytes. FASEB Journal, 2002, 16, 825-832.	0.5	37
188	CELLULARMECHANISMS FOR THEREPRESSION OFAPOPTOSIS. Annual Review of Pharmacology and Toxicology, 2002, 42, 259-281.	9.4	110
189	Cell volume and ion changes during apoptotic cell death. Advances in Cancer Research, 2002, 85, 175-201.	5.0	5
190	Invited Review: Cell Volume Control and Signal Transduction in Apoptosis. Toxicologic Pathology, 2002, 30, 541-551.	1.8	42
191	The Glucocorticoid Receptor: Coding a Diversity of Proteins and Responses through a Single Gene. Molecular Endocrinology, 2002, 16, 1719-1726.	3.7	235
192	Expression of glucocorticoid receptor \hat{l}_{\pm} - and \hat{l}^2 -isoforms in human cells and tissues. American Journal of Physiology - Cell Physiology, 2002, 283, C1324-C1331.	4.6	185
193	AUUUA motifs in the 3′UTR of human glucocorticoid receptor α and β mRNA destabilize mRNA and decrease receptor protein expression. Steroids, 2002, 67, 627-636.	1.8	111
194	Molecular mechanisms of glucocorticoid action and resistance. Journal of Steroid Biochemistry and Molecular Biology, 2002, 83, 37-48.	2.5	370
195	Apoptotic volume decrease and the incredible shrinking cell. Cell Death and Differentiation, 2002, 9, 1307-1310.	11.2	214
196	Molecular interplay between ion channels and the regulation of apoptosis. Biological Research, 2002, 35, 203-7.	3.4	15
197	Regulation of Glucocorticoid Receptor Function During the Cell Cycle. , 2002, , 207-221.		0
198	Chapter 3 Flow cytometric analysis of cell shrinkage and monovalent ions during apoptosis. Methods in Cell Biology, 2001, 66, 49-67.	1.1	18

#	Article	IF	Citations
199	Expression of the Human Glucocorticoid Receptor $\hat{l}\pm$ and \hat{l}^2 Isoforms in Human Respiratory Epithelial Cells and Their Regulation by Dexamethasone. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 49-57.	2.9	104
200	Modification of Alternative Splicing of Bcl-x Pre-mRNA in Prostate and Breast Cancer Cells. Journal of Biological Chemistry, 2001, 276, 16411-16417.	3.4	145
201	Proteasome-mediated Glucocorticoid Receptor Degradation Restricts Transcriptional Signaling by Glucocorticoids. Journal of Biological Chemistry, 2001, 276, 42714-42721.	3.4	325
202	Plasma Membrane Depolarization without Repolarization Is an Early Molecular Event in Anti-Fas-induced Apoptosis. Journal of Biological Chemistry, 2001, 276, 4304-4314.	3.4	158
203	Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative \hat{l}^2 isoform: A mechanism for the generation of glucocorticoid resistance. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6865-6870.	7.1	442
204	Differential Involvement of Initiator Caspases in Apoptotic Volume Decrease and Potassium Efflux during Fas- and UV-induced Cell Death. Journal of Biological Chemistry, 2001, 276, 37602-37611.	3.4	81
205	Protein Kinase C Regulates FADD Recruitment and Death-inducing Signaling Complex Formation in Fas/CD95-induced Apoptosis. Journal of Biological Chemistry, 2001, 276, 44944-44952.	3.4	87
206	Glucocorticoids Regulate Plasma Membrane Potential During Rat Thymocyte Apoptosis in Vivo and in Vitro. Endocrinology, 2001, 142, 421-429.	2.8	56
207	Glucocorticoid-Induced Plasma Membrane Depolarization during Thymocyte Apoptosis: Association with Cell Shrinkage and Degradation of the Na+/K+-Adenosine Triphosphatase. Endocrinology, 2001, 142, 5059-5068.	2.8	62
208	Molecular Identification and Characterization of A and B Forms of the Glucocorticoid Receptor. Molecular Endocrinology, 2001, 15, 1093-1103.	3.7	137
209	The glucocorticoid receptor: expression, function, and regulation of glucocorticoid responsiveness. , 2001, , 55-80.		7
210	Glucocorticoids Regulate Plasma Membrane Potential During Rat Thymocyte Apoptosis in Vivo and in Vitro. Endocrinology, 2001, 142, 421-429.	2.8	16
211	Glucocorticoid-Induced Plasma Membrane Depolarization during Thymocyte Apoptosis: Association with Cell Shrinkage and Degradation of the Na+/K+-Adenosine Triphosphatase. Endocrinology, 2001, 142, 5059-5068.	2.8	22
212	Molecular Identification and Characterization of A and B Forms of the Glucocorticoid Receptor. Molecular Endocrinology, 2001, 15, 1093-1103.	3.7	43
213	Mechanisms of Apoptosis Repression. , 2001, 23, 11-33.		1
214	Volume Regulation and Ion Transport during Apoptosis. Methods in Enzymology, 2000, 322, 421-433.	1.0	13
215	28S ribosome degradation in lymphoid cell apoptosis: evidence for caspase and Bcl-2-dependent and -independent pathways. Cell Death and Differentiation, 2000, 7, 994-1001.	11.2	38
216	Cell volume regulation in immune cell apoptosis. Cell and Tissue Research, 2000, 301, 33-42.	2.9	64

#	Article	IF	Citations
217	Delineation of the Signaling Pathways Involved in Glucocorticoid-Induced and Spontaneous Apoptosis of Rat Thymocytes. Endocrinology, 2000, 141, 528-538.	2.8	52
218	Delineation of an Antiapoptotic Action of Glucocorticoids in Hepatoma Cells: The Role of Nuclear Factor-Î ^o B. Endocrinology, 2000, 141, 1854-1862.	2.8	79
219	Protein Kinase C (PKC) Inhibits Fas Receptor-induced Apoptosis through Modulation of the Loss of K+ and Cell Shrinkage. Journal of Biological Chemistry, 2000, 275, 19609-19619.	3.4	116
220	Identification of Potassium-Dependent and -Independent Components of the Apoptotic Machinery in Mouse Ovarian Germ Cells and Granulosa Cells1. Biology of Reproduction, 2000, 63, 1358-1369.	2.7	67
221	A Selective Requirement for Elevated Calcium in DNA Degradation, but Not Early Events in Anti-Fas-induced Apoptosis. Journal of Biological Chemistry, 2000, 275, 30586-30596.	3.4	57
222	CBP (CREB Binding Protein) Integrates NF-κB (Nuclear Factor-κB) and Glucocorticoid Receptor Physical Interactions and Antagonism. Molecular Endocrinology, 2000, 14, 1222-1234.	3.7	127
223	Apoptotic Nuclease Assays. Methods in Enzymology, 2000, 322, 47-62.	1.0	4
224	Glucocorticoid resistance in asthma is associated with elevated in vivo expression of the glucocorticoid receptor \hat{l}^2 -isoform. Journal of Allergy and Clinical Immunology, 2000, 105, 943-950.	2.9	255
225	Delineation of the Signaling Pathways Involved in Glucocorticoid-Induced and Spontaneous Apoptosis of Rat Thymocytes. Endocrinology, 2000, 141, 528-538.	2.8	22
226	Delineation of an Antiapoptotic Action of Glucocorticoids in Hepatoma Cells: The Role of Nuclear Factor-ÂB. Endocrinology, 2000, 141, 1854-1862.	2.8	30
227	CBP (CREB Binding Protein) Integrates NF-ÂB (Nuclear Factor-ÂB) and Glucocorticoid Receptor Physical Interactions and Antagonism. Molecular Endocrinology, 2000, 14, 1222-1234.	3.7	80
228	Glucocorticoids inhibit serum depletionâ€induced apoptosis in T lymphocytes expressing Bclâ€2. FASEB Journal, 1999, 13, 467-476.	0.5	35
229	The Dominant Negative Activity of the Human Glucocorticoid Receptor \hat{l}^2 Isoform. Journal of Biological Chemistry, 1999, 274, 27857-27866.	3.4	383
230	Molecular Control of Immune/Inflammatory Responses: Interactions Between Nuclear Factor-κB and Steroid Receptor-Signaling Pathways. Endocrine Reviews, 1999, 20, 435-459.	20.1	663
231	Caspase Independent/Dependent Regulation of K+, Cell Shrinkage, and Mitochondrial Membrane Potential during Lymphocyte Apoptosis. Journal of Biological Chemistry, 1999, 274, 21953-21962.	3.4	288
232	Mechanisms of Glucocorticoid-receptor-mediated Repression of Gene Expression. Trends in Endocrinology and Metabolism, 1999, 10, 396-402.	7.1	149
233	A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis. Steroids, 1999, 64, 563-569.	1.8	67
234	Immunocytochemical analysis of the glucocorticoid receptor alpha isoform (GRα) using a GRα-specific antibody. Steroids, 1999, 64, 742-751.	1.8	54

#	Article	IF	Citations
235	Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Advances in Enzyme Regulation, 1999, 39, 157-171.	2.6	212
236	Signaling cascades of apoptosis., 1999,, 7-17.		2
237	The Novel Progesterone Receptor Antagonists RTI 3021-012 and RTI 3021-022 Exhibit Complex Glucocorticoid Receptor Antagonist Activities: Implications for the Development of Dissociated Antiprogestins. Endocrinology, 1999, 140, 1449-1458.	2.8	26
238	Molecular Control of Immune/Inflammatory Responses: Interactions Between Nuclear Factor-ÂB and Steroid Receptor-Signaling Pathways. , 1999, 20, 435-459.		243
239	High and low molecular weight DNA cleavage in ovarian granulosa cells: characterization and protease modulation in intact cells and in cell-free nuclear autodigestion assays. Cell Death and Differentiation, 1998, 5, 38-49.	11.2	14
240	Evidence that non-caspase proteases are required for chromatin degradation during apoptosis. Cell Death and Differentiation, 1998, 5, 1017-1027.	11.2	46
241	Induction of apoptosis by the novel retinoid AHPN in human T-cell lymphoma cells involves caspase-dependent and independent pathways. Cell Death and Differentiation, 1998, 5, 973-983.	11.2	42
242	Glucocorticoid receptor phosphorylation: Overview, function and cell cycle-dependence. Journal of Steroid Biochemistry and Molecular Biology, 1998, 65, 91-99.	2.5	118
243	Glucocorticoid-induced thymocyte apoptosis: protease-dependent activation of cell shrinkage and DNA degradation. Journal of Steroid Biochemistry and Molecular Biology, 1998, 65, 207-217.	2.5	54
244	A necessary role for cell shrinkage in apoptosis. Biochemical Pharmacology, 1998, 56, 1549-1559.	4.4	233
245	CELL CYCLE REGULATION AND APOPTOSIS. Annual Review of Physiology, 1998, 60, 601-617.	13.1	451
246	Cross-Talk between Nuclear Factor-κB and the Steroid Hormone Receptors: Mechanisms of Mutual Antagonism. Molecular Endocrinology, 1998, 12, 45-56.	3.7	355
247	Expression and Subcellular Distribution of the \hat{l}^2 -Isoform of the Human Glucocorticoid Receptor*. Endocrinology, 1997, 138, 5028-5038.	2.8	165
248	A Primary Role for K+ and Na+ Efflux in the Activation of Apoptosis. Journal of Biological Chemistry, 1997, 272, 32436-32442.	3.4	496
249	Native Recombinant Cyclophilins A, B, and C Degrade DNA Independently of Peptidylprolyl cis-trans-Isomerase Activity. Journal of Biological Chemistry, 1997, 272, 6677-6684.	3.4	147
250	Mouse Glucocorticoid Receptor Phosphorylation Status Influences Multiple Functions of the Receptor Protein. Journal of Biological Chemistry, 1997, 272, 9287-9293.	3.4	219
251	Intracellular K+ Suppresses the Activation of Apoptosis in Lymphocytes. Journal of Biological Chemistry, 1997, 272, 30567-30576.	3.4	417
252	In Vivo Resistance to Glucocorticoid-Induced Apoptosis in Rat Thymocytes with Normal Steroid Receptor Function in Vitro. Endocrinology, 1997, 138, 810-818.	2.8	20

#	Article	IF	Citations
253	Control of Steroid Receptor Function and Gene Expression:. Principles of Medical Biology, 1997, 10, 311-320.	0.1	0
254	Dominant Suppression of Lymphocyte Apoptosis by Hepatoma Cells. Experimental Cell Research, 1997, 230, 121-132.	2.6	10
255	Utilization of an in vitro assay to evaluate chromatin degradation by candidate apoptotic nucleases. Cell Death and Differentiation, 1997, 4, 200-208.	11.2	18
256	The First International Symposium on Programmed Cell Death Shanghai, China. Cell Death and Differentiation, 1997, 4, 168-168.	11.2	0
257	Cell Volume Regulation and the Movement of Ions during Apoptosis. , 1997, , 230-248.		3
258	Cell Volume Regulation, Ions, and Apoptosis. , 1997, , 63-70.		4
259	Expression and Subcellular Distribution of the Â-lsoform of the Human Glucocorticoid Receptor. Endocrinology, 1997, 138, 5028-5038.	2.8	72
260	In Vivo Resistance to Glucocorticoid-Induced Apoptosis in Rat Thymocytes with Normal Steroid Receptor Function in Vitro. Endocrinology, 1997, 138, 810-818.	2.8	5
261	Cellular catabolism in apoptosis: DNA degradation and endonuclease activation. Experientia, 1996, 52, 957-962.	1.2	44
262	The Human Glucocorticoid Receptor β Isoform. Journal of Biological Chemistry, 1996, 271, 9550-9559.	3.4	503
263	Glucocorticoid Actions on Normal and Neoplastic Lymphocytes: Activation of Apoptosis. , 1996, , 517-537.		0
264	The role of DNA fragmentation in apoptosis. Trends in Cell Biology, 1995, 5, 21-26.	7.9	537
265	Cell cycle and apoptosis: Common pathways to life and death. Journal of Cellular Biochemistry, 1995, 58, 175-180.	2.6	357
266	Regulation of apoptosis by steroid hormones. Journal of Steroid Biochemistry and Molecular Biology, 1995, 53, 1-8.	2.5	108
267	Immunocytochemical analysis of hormone mediated nuclear translocation of wild type and mutant glucocorticoid receptors. Journal of Steroid Biochemistry and Molecular Biology, 1995, 55, 135-146.	2.5	62
268	Bclâ€2 inhibits glucocorticoidâ€induced apoptosis but only partially blocks calcium ionophore or cycloheximideâ€regulated apoptosis in S49 cells. FASEB Journal, 1994, 8, 639-645.	0.5	64
269	Modulation of steroid receptorâ€mediated gene expression by vitamin B 6. FASEB Journal, 1994, 8, 343-349.	0.5	74
270	Glucocorticoid-induced Apoptosis of Lymphoid Cells. International Archives of Allergy and Immunology, 1994, 105, 347-354.	2.1	103

#	Article	IF	Citations
271	Regulation of apoptosis in S49 cells. Journal of Steroid Biochemistry and Molecular Biology, 1994, 49, 303-310.	2.5	14
272	Regulation of the human glucocorticoid receptor by long-term and chronic treatment with glucocorticoid. Steroids, 1994, 59, 436-442.	1.8	119
273	Intragenic sequences of the human glucocorticoid receptor complementary DNA mediate hormone-inducible receptor messenger RNA down-regulation through multiple mechanisms. Molecular Endocrinology, 1994, 8, 1764-1773.	3.7	61
274	Vitamin B6 Modulation of Steroid Receptor-mediated Gene Expression. , 1994, , 319-327.		0
275	Multiple mechanisms for regulation of steroid hormone action. Journal of Cellular Biochemistry, 1993, 51, 130-134.	2.6	26
276	Apoptosis: The Biochemistry and Molecular Biology of Programmed Cell Death*. Endocrine Reviews, 1993, 14, 133-151.	20.1	671
277	[38] Protein-blotting procedures to evaluate interactions of steroid receptors with DNA. Methods in Enzymology, 1993, 218, 535-551.	1.0	4
278	Mechanism of tissue-specific induction of internucleosomal deoxyribonucleic acid cleavage activity and apoptosis by glucocorticoids. Endocrinology, 1993, 133, 591-599.	2.8	29
279	Apoptosis: the biochemistry and molecular biology of programmed cell death. , 1993, 14, 133-151.		81
280	Apoptosis: Signal Transduction and Modes of Activation. , 1993, , 1-22.		0
281	Immunological detection of degradation intermediates of skeletal-muscle glycogen phosphorylase <i>in vitro</i> and <i>in vivo</i> . Biochemical Journal, 1992, 288, 291-296.	3.7	7
282	Methotrexate-induced overexpression of functional glucocorticoid receptors in Chinese hamster ovary cells. Molecular and Cellular Endocrinology, 1992, 83, 153-171.	3.2	5
283	The effect of oxidation/reduction on the charge heterogeneity of the human glucocorticoid receptor. Journal of Steroid Biochemistry and Molecular Biology, 1992, 41, 1-10.	2.5	5
284	Thymocyte apoptosis a model of programmed cell death. Trends in Endocrinology and Metabolism, 1992, 3, 17-23.	7.1	70
285	The down side of glucocorticoid receptor regulation. Molecular and Cellular Endocrinology, 1992, 83, C1-C8.	3.2	74
286	Ligand-dependent down-regulation of stably transfected human glucocorticoid receptors is associated with the loss of functional glucocorticoid responsiveness. Molecular Endocrinology, 1992, 6, 2090-2102.	3.7	46
287	Identification and characterization of glucocorticoid-regulated nuclease(s) in lymphoid cells undergoing apoptosis. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 661-671.	2.5	57
288	Autoregulation of glucocorticoid receptor gene expression. Steroids, 1991, 56, 52-58.	1.8	145

#	Article	IF	Citations
289	Evaluation of the Role of Ligand and Thermal Activation on Specific DNA Binding by <i>in Vitro </i> i>Synthesized Human Glucocorticoid Receptor. Molecular Endocrinology, 1991, 5, 1013-1022.	3.7	15
290	Novel role for vitamin B6 in steroid hormone action: a link between nutrition and the endocrine system. Journal of Nutritional Biochemistry, 1991, 2, 523-534.	4.2	18
291	Immunocytochemical Localization of the Glucocorticoid Receptor in Rat Brain, Pituitary, Liver, and Thymus with Two New Polyclonal Antipeptide Antibodies*. Endocrinology, 1991, 129, 3064-3072.	2.8	70
292	Internucleosomal Deoxyribonucleic Acid Cleavage Activity in Apoptotic Thymocytes: Detection and Endocrine Regulation*. Endocrinology, 1991, 128, 1190-1197.	2.8	60
293	Similar Actions of Glucocorticoids and Calcium on the Regulation of Apoptosis in S49 Cells. Molecular Endocrinology, 1991, 5, 1169-1179.	3.7	73
294	The Stimulation of Respiration by Progesterone in Ovariectomized Cat Is Mediated by an Estrogen-Dependent Hypothalamic Mechanism Requiring Gene Expression*. Endocrinology, 1990, 126, 519-527.	2.8	59
295	Affinity of interactions between human glucocorticoid receptors and DNA: at physiologic ionic strength, stable binding occurs only with DNAs containing partially symmetric glucocorticoid response elements. Biochemistry, 1990, 29, 6662-6670.	2.5	10
296	The Influence of Vitamin B6on the Structure and Function of the Glucocorticoid Receptor. Annals of the New York Academy of Sciences, 1990, 585, 452-465.	3.8	20
297	Novel Antipeptide Antibodies to the Human Glucocorticoid Receptor: Recognition of Multiple Receptor Forms <i>in Vitro</i> and Distinct Localization of Cytoplasmic and Nuclear Receptors. Molecular Endocrinology, 1990, 4, 1427-1437.	3.7	139
298	Stable Overproduction of Intact Glucocorticoid Receptors in Mammalian Cells Using a Selectable Glucocorticoid Responsive Dihydrofolate Reductase Gene. Molecular Endocrinology, 1989, 3, 1733-1747.	3.7	11
299	Characterization of human glucocorticoid receptor complexes formed with DNA fragments containing or lacking glucocorticoid response elements. Biochemistry, 1989, 28, 1968-1975.	2.5	14
300	Glucocorticoid regulation of the rat cytochrome P450c (P450IA1) gene: Receptor binding within intron I. Archives of Biochemistry and Biophysics, 1989, 269, 93-105.	3.0	74
301	Antibodies to Steroid Receptor Deoxyribonucleic Acid Binding Domains and their Reactivity with the Human Glucocorticoid Receptor. Molecular Endocrinology, 1988, 2, 1018-1026.	3.7	32
302	Analysis of Glucocorticoid Actions on Rat Thymocyte Deoxyribonucleic Acid by Fluorescence-Activated Flow Cytometry*. Endocrinology, 1988, 122, 2158-2164.	2.8	84
303	Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 7788-7792.	7.1	98
304	Application of a protein-blotting procedure to the study of human glucocorticoid receptor interactions with DNA Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 1744-1748.	7.1	88
305	Analysis of the glucocorticoid antagonist action of dexamethasone 21-mesylate in HeLa S3 cells. The Journal of Steroid Biochemistry, 1987, 26, 181-187.	1.1	10
306	Glucocorticoid action on the immune system. The Journal of Steroid Biochemistry, 1987, 27, 201-208.	1.1	75

#	Article	IF	CITATIONS
307	Glucocorticoids increase the length of the G2 and M phases of the hela S3 cell cycle. The Journal of Steroid Biochemistry, 1987, 28, 345-347.	1.1	16
308	pBR322 contains glucocorticoid regulatory element dna consensus sequences. Biochemical and Biophysical Research Communications, 1987, 144, 1-10.	2.1	27
309	Regulation of epidermal growth factor receptors by glucocorticoids during the cell cycle in HeLa S3 cells. Archives of Biochemistry and Biophysics, 1986, 249, 116-125.	3.0	32
310	Correlation between LH and estrogen receptor turnover in pituitary and hypothalamus of castrate rats following estrogen agonists and antagonists. The Journal of Steroid Biochemistry, 1986, 24, 623-628.	1.1	6
311	Cross-linking of epidermal growth factor receptors in intact cells: detection of initial stages of receptor clustering and determination of molecular weight of high-affinity receptors. Biochemistry, 1986, 25, 6414-6420.	2.5	50
312	[20] Monoclonal antibodies to vitamin B6. Methods in Enzymology, 1986, 122, 120-127.	1.0	4
313	Rapid <i>in Vivo</i> Effects of Glucocorticoids on the Integrity of Rat Lymphocyte Genomic Deoxyribonucleic Acid*. Endocrinology, 1986, 118, 38-45.	2.8	226
314	Vitamin B ₆ and Glucocorticoid Action*. Endocrine Reviews, 1986, 7, 140-148.	20.1	18
315	Identification of Human Glucocorticoid Receptor Complementary DNA Clones by Epitope Selection. Science, 1985, 228, 740-742.	12.6	286
316	THE PHYSIOLOGICAL SIGNIFICANCE OF THE STRUCTURE OF GLUCOCORTICOID AND PROGRESTERONE RECEPTORS. , 1985 , , $141-172$.		1
317	Increased Steroid Responsiveness during Sodium Butyrate-induced "Differentiation―of HeLa S ₃ Cells*. Endocrinology, 1984, 114, 566-575.	2.8	15
318	Evidence for Microheterogeneity in the Structure of Human Glucocorticoid Receptors*. Endocrinology, 1984, 115, 1588-1597.	2.8	38
319	A general immunochemical method for detecting proteins on blots. Analytical Biochemistry, 1984, 137, 210-216.	2.4	53
320	Localization of pyrodoxal phosphate binding site on the mero-receptor domain of the glucocorticoid receptor. Biochimica Et Biophysica Acta - General Subjects, 1984, 800, 258-268.	2.4	6
321	The physicochemical nature of 37°C cytoplasmic glucocorticoid receptors in HeLa S3 cells. The Journal of Steroid Biochemistry, 1984, 21, 717-726.	1.1	3
322	Regulation of high- and low-affinity epidermal growth factor receptors by glucocorticoids. Archives of Biochemistry and Biophysics, 1984, 235, 141-149.	3.0	31
323	A Procedure for the Measurement of Hormone Receptors Using a Cell Harvesting Machine. Journal of Receptors and Signal Transduction, 1984, 4, 727-739.	1.2	3
324	Immunoblot detection of pyridoxal phosphate binding proteins in liver and hepatoma cytosolic extracts. Biochemical and Biophysical Research Communications, 1983, 112, 61-65.	2.1	7

#	Article	IF	Citations
325	Comparison of pyridoxal phosphate and 0.4 m KCl-extracted nuclear glucocorticoid receptors in HeLa S3 cells. Archives of Biochemistry and Biophysics, 1983, 225, 906-915.	3.0	5
326	Glucocorticoid Receptors and the Cell Cycle: Evidence that the Accumulation of Glucocorticoid Receptors during the S Phase of the Cell Cycle is Dependent on Ribonucleic Acid and Protein Synthesis*. Endocrinology, 1982, 110, 1653-1662.	2.8	64
327	IDENTIFICATION OF MODIFIED FORMS OF HUMAN GLUCOCORTICOID RECEPTORS DURING THE CELL CYCLE. Endocrinology, 1982, 110, 2192-2194.	2.8	25
328	Glucocorticoids Stimulate Ribonucleic Acid Degradation in Isolated Rat Thymic Lymphocytes in Vitro*. Endocrinology, 1982, 111, 184-190.	2.8	57
329	5'-Deoxypyridoxal interaction with dexamethasone receptor: a new probe for the structure and function of steroid receptors. Biochemistry, 1982, 21, 5644-5650.	2.5	7
330	Physicochemical properties of the cytoplasmic glucocort1coid receptor complex in HeLa S3 cells. The Journal of Steroid Biochemistry, 1982, 16, 419-428.	1.1	20
331	Pyridoxal phosphate blocks aggregation of molybdate treated glucocorticoid receptors in HeLa S3 cells. The Journal of Steroid Biochemistry, 1982, 17, 277-280.	1.1	8
332	Lack of effect of butyrate on S phase DNA synthesis despite presence of histone hyperacetylation. Experimental Cell Research, 1982, 141, 283-291.	2.6	19
333	Glucocorticoids inhibit precursor incorporation into protein in splenic lymphocytes by stimulating protein degradation and expanding intracellular amino acid pools. Biochimica Et Biophysica Acta - General Subjects, 1982, 717, 236-247.	2.4	15
334	Interaction of pyridoxal phosphate with glucocorticoid receptors from HeLa S3 cells. The Journal of Steroid Biochemistry, 1981, 14, 9-18.	1.1	27
335	Pyridoxal phosphate: A possible cofactor in steroid hormone action. The Journal of Steroid Biochemistry, 1981, 15, 11-16.	1.1	41
336	Glucocorticoid-stimulated protein degradation in lymphocytes: Quantitation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Archives of Biochemistry and Biophysics, 1981, 212, 399-410.	3.0	8
337	Glucocorticoid regulation of two serine hydrolases in rat splenic lymphocytes in vitro. Biochimica Et Biophysica Acta - General Subjects, 1981, 678, 18-26.	2.4	5
338	Comparative pulmonary surfactant-inducing effect of three corticosteroids in the near-term rat. American Journal of Obstetrics and Gynecology, 1981, 139, 562-564.	1.3	19
339	Regulation of Glucocorticoid Receptors by Glucocorticoids in Cultured HeLa S ₃ Cells*. Endocrinology, 1981, 109, 1975-1982.	2.8	181
340	Glucocorticoids Stimulate Protein Degradation in Lymphocytes: A Possible Mechanism of Steroid-Induced Cell Death*. Endocrinology, 1980, 107, 1512-1524.	2.8	47
341	A radioimmunoassay for phosphorylated forms of vitamin B6. Journal of Immunological Methods, 1980, 33, 261-266.	1.4	0
342	A radioimmunoassay for phosphorylated forms of vitamin B6. Journal of Immunological Methods, 1980, 33, 261-266.	1.4	12

#	Article	IF	Citations
343	Modulation of glucocorticoid effects and steroid receptor binding in butyrate-treated HeLa S3 cells. Archives of Biochemistry and Biophysics, 1980, 201, 174-184.	3.0	46
344	Multiple forms of nuclear binding of glucocorticoid-receptor complexes in rat thymocytes. The Journal of Steroid Biochemistry, 1980, 13, 105-112.	1.1	25
345	5′-Deoxypyridoxal inhibition of glucocorticoid receptor binding in HeLa S3 cells and rat thymocytes. Biochemical and Biophysical Research Communications, 1980, 92, 155-162.	2.1	6
346	Differential solubilization of nuclear glucocorticoid receptors by DNAase I and DNAase II. Biochimica Et Biophysica Acta - General Subjects, 1980, 630, 375-385.	2.4	11
347	Pyridoxal phosphate induced alterations in glucocorticoid receptor metabolism by proteases. Biochemistry, 1980, 19, 6162-6170.	2.5	49
348	Alterations in specificity of the glucocorticoid receptor with temperature in rat splenic lymphocytes. The Journal of Steroid Biochemistry, 1979, 10, 21-29.	1.1	22
349	Differential sensitivity of isolated rat thymocytes to glucocorticoids following concanavalin A stimulation. The Journal of Steroid Biochemistry, 1979, 10, 581-585.	1.1	2
350	Pyridoxal phosphate induced alterations in glucocorticoid receptor conformation. Biochemistry, 1979, 18, 2378-2384.	2.5	75
351	Extraction of nuclear glucocorticoid-receptor complexes with pyridoxal phosphate. Biochemical and Biophysical Research Communications, 1978, 82, 1140-1146.	2.1	54
352	Comparison of glucocorticoid-receptor complex binding to nuclei and DNA cellulose Evidence for different forms of interaction. Biochimica Et Biophysica Acta - General Subjects, 1978, 543, 545-555.	2.4	28
353	The effect of dexamethasone and prostaglandin F2α on production and release of surfactant in type II alveolar cells. Prostaglandins, 1978, 16, 923-929.	1.2	31
354	The Dynamics of Intracellular Estrogen Receptor Regulation as Influenced by 17β-Estradiol1. Biology of Reproduction, 1978, 18, 234-246.	2.7	125
355	Alteration in glucocorticoid binding site number during the cell cycle in HeLa cells. Nature, 1977, 266, 643-645.	27.8	98
356	Concanavalin A-induced glucocorticoid resistance in rat thymus cells: Decreased cytoplasmic and nuclear receptor binding of dexamethasone. The Journal of Steroid Biochemistry, 1976, 7, 1141-1145.	1.1	17
357	Dissimilar Effects of Antiestrogens Upon Estrogen Receptors in Responsive Tissues of Male and Female Rats12. Biology of Reproduction, 1976, 15, 381-389.	2.7	25
358	Sex-Related Differences in the Regulation of Cytoplasmie Estrogen Receptor Levels in Responsive Tissues of the Rat. Endocrinology, 1976, 98, 833-841.	2.8	47
359	Modulation by Thyroid Hormones of Cytoplasmic Estrogen Receptor Concentrations in Reproductive Tissues of the Rat. Endocrinology, 1975, 97, 59-67.	2.8	58
360	Concanavalin a induced glucocorticoid resistance in rat thymocytes in relation to glucose metabolism and glucocorticoid receptors. Biochemical and Biophysical Research Communications, 1975, 67, 463-470.	2.1	8

#	Article	lF	CITATIONS
361	Estrogenic Regulation of Cytoplasmic Receptor Populations in Estrogen-Responsive Tissues of the Rat. Endocrinology, 1974, 95, 1621-1629.	2.8	126
362	Glucocorticoid Receptor Subtypes and Steroid Sensitivity., 0, , 39-54.		0