Richard Webster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7858201/publications.pdf

Version: 2024-02-01

40 papers

1,244 citations

394421 19 h-index 35 g-index

40 all docs

40 docs citations

times ranked

40

2093 citing authors

#	Article	IF	CITATIONS
1	Electronic and optical properties of single crystal SnS ₂ : an earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A, 2016, 4, 1312-1318.	10.3	246
2	Quasiepitaxy Strategy for Efficient Fullâ€Inorganic Sb ₂ S ₃ Solar Cells. Advanced Functional Materials, 2019, 29, 1901720.	14.9	136
3	Direct Growth of Highly Strained Pt Islands on Branched Ni Nanoparticles for Improved Hydrogen Evolution Reaction Activity. Journal of the American Chemical Society, 2019, 141, 16202-16207.	13.7	113
4	Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2â^'x for pseudocapacitive energy storage applications. Nature Communications, 2019, 10, 2594.	12.8	75
5	Fatigue and dynamic aging behavior of a high strength Al-5024 alloy fabricated by laser powder bed fusion additive manufacturing. Acta Materialia, 2021, 220, 117312.	7.9	59
6	Preserving the Exposed Facets of Pt ₃ Sn Intermetallic Nanocubes During an Order to Disorder Transition Allows the Elucidation of the Effect of the Degree of Alloy Ordering on Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 3231-3239.	13.7	57
7	2D Porphyrinic Metal–Organic Framework Nanosheets as Multidimensional Photocatalysts for Functional Materials. Angewandte Chemie - International Edition, 2021, 60, 22664-22671.	13.8	56
8	Pd–Ru core–shell nanoparticles with tunable shell thickness for active and stable oxygen evolution performance. Nanoscale, 2018, 10, 15173-15177.	5.6	42
9	Antibacterial Effect of Au Implantation in Ductile Nanocomposite Multilayer (TiAlSiY)N/CrN Coatings. ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS APPLI	8.0	36
10	Nanoscale architecture of (CrN/ZrN)/(Cr/Zr) nanocomposite coatings: Microstructure, composition, mechanical properties and first-principles calculations. Journal of Alloys and Compounds, 2020, 831, 154808.	5 . 5	34
11	Gallium Nanodroplets are Anti-Inflammatory without Interfering with Iron Homeostasis. ACS Nano, 2022, 16, 8891-8903.	14.6	33
12	Rapid phosphine-free synthesis of CdSe quantum dots: promoting the generation of Se precursors using a radical initiator. Journal of Materials Chemistry A, 2014, 2, 6879-6886.	10.3	31
13	Enhanced graphitic domains of unreduced graphene oxide and the interplay of hydration behaviour and catalytic activity. Materials Today, 2021, 50, 44-54.	14.2	27
14	Introducing Stacking Faults into Three-Dimensional Branched Nickel Nanoparticles for Improved Catalytic Activity. Journal of the American Chemical Society, 2022, 144, 11094-11098.	13.7	27
15	Electron microscopy and its role in advanced lithium-ion battery research. Sustainable Energy and Fuels, 2019, 3, 1623-1646.	4.9	25
16	Electron microscopy and diffraction studies of pulsed laser deposited cuprous oxide thin films grown at low substrate temperatures. Materialia, 2018, 3, 230-238.	2.7	24
17	Ultrathin Feâ€Nâ€C Nanosheets Coordinated Feâ€Doped CoNi Alloy Nanoparticles for Electrochemical Water Splitting. Particle and Particle Systems Characterization, 2019, 36, 1800252.	2.3	21
18	Formation of Si-Rich Interfaces by Radiation-Induced Diffusion and Microsegregation in CrN/ZrN Nanolayer Coating. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16928-16938.	8.0	21

#	Article	IF	CITATIONS
19	Microalloying effects of Mo versus Cr in HSLA steels with ultrafine-grained ferrite microstructures. Materials and Design, 2020, 185, 108278.	7.0	20
20	Assembly of cerium-based coordination polymer into variant polycrystalline 2D–3D CeO2â^'x nanostructures. Journal of Materials Chemistry A, 2020, 8, 4753-4763.	10.3	20
21	Electrochemical Reduction of CO 2 on Nitrogenâ€Doped Carbon Catalysts With and Without Iron. ChemElectroChem, 2019, 6, 4626-4636.	3.4	17
22	Simultaneous Functionalization of Carbon Surfaces with Rhodium and Iridium Organometallic Complexes: Hybrid Bimetallic Catalysts for Hydroamination. Organometallics, 2019, 38, 780-787.	2.3	17
23	Exploration of sub-bandgap states in 2D halide perovskite single-crystal photodetector. Npj 2D Materials and Applications, 2022, 6, .	7.9	16
24	Tungsten oxide nanorod growth by pulsed laser deposition: influence of substrate and process conditions. Nanoscale, 2014, 6, 13586-13597.	5 . 6	14
25	Electron microscopy of gallium nitride growth on polycrystalline diamond. Semiconductor Science and Technology, 2015, 30, 114007.	2.0	10
26	Morphological and electrical comparison of Ti and Ta based ohmic contacts for AlGaN/GaN-on-SiC HFETs. Microelectronics Reliability, 2017, 68, 2-4.	1.7	10
27	Compositional variations in In _{0.5} Ga _{0.5} N nanorods grown by molecular beam epitaxy. Nanotechnology, 2014, 25, 215705.	2.6	9
28	Transmission electron microscopy of indium gallium nitride nanorods grown by molecular beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 417-420.	0.8	7
29	Evidence of Low-Temperature Joints in Silver Nanowire Based Transparent Conducting Layers for Solar Cells. ACS Applied Nano Materials, 2020, 3, 3205-3213.	5.0	7
30	Ionic interdiffusion as interaction mechanism between Al and Si 3 N 4. Journal of the American Ceramic Society, 2019, 102, 4835-4847.	3.8	6
31	Molecular beam epitaxy of InN nanorods on Si- and C-faces of SiC substrates. Journal of Crystal Growth, 2014, 386, 135-138.	1.5	5
32	Interfacial origins of visible-light photocatalytic activity in ZnS–GaP multilayers. Acta Materialia, 2019, 181, 139-147.	7.9	5
33	Synthetic Mechanism Studies of Iron Selenides: An Emerging Class of Materials for Electrocatalysis. Catalysts, 2021, 11, 681.	3. 5	5
34	Advanced Thermo-mechanical Process for Homogenous Hierarchical Microstructures in HSLA Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5800-5815.	2.2	4
35	Largely Enhanced Mobility in Trilayered LaAlO ₃ /SrTiO ₃ /LaAlO ₃ Heterostructures. ACS Applied Materials & https://www.acception.com/acception/specifical-sub-acception	8.0	3
36	Composition and strain relaxation of In x Ga1â^x N graded core–shell nanorods. Nanotechnology, 2018, 29, 405706.	2.6	3

3

#	Article	IF	CITATIONS
37	The growth of In0.5Ga0.5N and InN layers on (111)Si using nanorod intermediate arrays. Journal of Crystal Growth, 2013, 384, 55-60.	1.5	2
38	Indium Nitride and Indium Gallium Nitride layers grown on nanorods. Journal of Physics: Conference Series, 2013, 471, 012025.	0.4	1
39	Microstructure of InxGa1â^xN nanorods grown by molecular beam epitaxy. Semiconductor Science and Technology, 2015, 30, 114014.	2.0	O
40	A New Method for the XEDS ζ-factor Measurement Through Modulation of Beam Current Microscopy and Microanalysis, 2021, 27, 2064-2067.	0.4	0