
Artemis G Hatzigeorgiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7858025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Research, 2015, 43, W460-W466.	14.5	1,494
2	DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Research, 2018, 46, D239-D245.	14.5	852
3	Analyzing MiRNA–LncRNA Interactions. Methods in Molecular Biology, 2016, 1402, 271-286.	0.9	690
4	DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Research, 2015, 43, D153-D159.	14.5	683
5	A combined computational-experimental approach predicts human microRNA targets. Genes and Development, 2004, 18, 1165-1178.	5.9	680
6	DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Research, 2016, 44, D231-D238.	14.5	628
7	DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Research, 2012, 40, W498-W504.	14.5	486
8	The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Research, 2009, 37, D155-D158.	14.5	364
9	DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Research, 2013, 41, D239-D245.	14.5	327
10	RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Research, 2019, 47, D221-D229.	14.5	153
11	DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Research, 2020, 48, D101-D110.	14.5	137
12	Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Molecular Cancer, 2014, 13, 28.	19.2	135
13	The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biology, 2016, 17, 192.	8.8	130
14	FLASH Proton Radiotherapy Spares Normal Epithelial and Mesenchymal Tissues While Preserving Sarcoma Response. Cancer Research, 2021, 81, 4808-4821.	0.9	77
15	The DIANA-mirExTra Web Server: From Gene Expression Data to MicroRNA Function. PLoS ONE, 2010, 5, e9171.	2.5	74
16	Functional Analysis of miRNAs Using the DIANA Tools Online Suite. Methods in Molecular Biology, 2017, 1517, 25-50.	0.9	66
17	Online resources for miRNA analysis. Clinical Biochemistry, 2013, 46, 879-900.	1.9	64
18	microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs. Nature Communications, 2014, 5, 5700.	12.8	58

#	Article	IF	CITATIONS
19	DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators. Nucleic Acids Research, 2016, 44, D190-D195.	14.5	53
20	A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nature Cell Biology, 2022, 24, 940-953.	10.3	52
21	A Positive Regulatory Loop between a Wnt-Regulated Non-coding RNA and ASCL2 Controls Intestinal Stem Cell Fate. Cell Reports, 2016, 15, 2588-2596.	6.4	47
22	DIANA-mirExTra v2.0: Uncovering microRNAs and transcription factors with crucial roles in NGS expression data. Nucleic Acids Research, 2016, 44, W128-W134.	14.5	43
23	DIANAâ€TarBase and DIANA Suite Tools: Studying Experimentally Supported microRNA Targets. Current Protocols in Bioinformatics, 2016, 55, 12.14.1-12.14.18.	25.8	43
24	DIANA-miTED: a microRNA tissue expression database. Nucleic Acids Research, 2022, 50, D1055-D1061.	14.5	40
25	Characterizing miRNA–IncRNA Interplay. Methods in Molecular Biology, 2021, 2372, 243-262.	0.9	32
26	microCLIP super learning framework uncovers functional transcriptome-wide miRNA interactions. Nature Communications, 2018, 9, 3601.	12.8	30
27	Peryton: a manual collection of experimentally supported microbe-disease associations. Nucleic Acids Research, 2021, 49, D1328-D1333.	14.5	23
28	mirPub: a database for searching microRNA publications. Bioinformatics, 2015, 31, 1502-1504.	4.1	20
29	Manatee: detection and quantification of small non-coding RNAs from next-generation sequencing data. Scientific Reports, 2020, 10, 705.	3.3	18
30	DIANA-miRGen v4: indexing promoters and regulators for more than 1500 microRNAs. Nucleic Acids Research, 2021, 49, D151-D159.	14.5	18
31	Solving the transcription start site identification problem with ADAPT-CAGE: a Machine Learning algorithm for the analysis of CAGE data. Scientific Reports, 2020, 10, 877.	3.3	17
32	Transcriptome Analysis Identifies Immune Markers Related to Visceral Leishmaniasis Establishment in the Experimental Model of BALB/c Mice. Frontiers in Immunology, 2019, 10, 2749.	4.8	13
33	MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development. ELife, 2020, 9, .	6.0	13
34	PlasmiR: A Manual Collection of Circulating microRNAs of Prognostic and Diagnostic Value. Cancers, 2021, 13, 3680.	3.7	9
35	DIANA-mAP: Analyzing miRNA from Raw NGS Data to Quantification. Genes, 2021, 12, 46.	2.4	9
36	Transcriptional Profiling of Leishmania infantum Infected Dendritic Cells: Insights into the Role of Immunometabolism in Host-Parasite Interaction. Microorganisms, 2022, 10, 1271.	3.6	6

#	ARTICLE	IF	CITATIONS
37	Identifying Pri-miRNA Transcription Start Sites. Methods in Molecular Biology, 2018, 1823, 11-31.	0.9	4
38	ACAMEMNON: an Accurate metaGenomics And MEtatranscriptoMics quaNtificatiON analysis suite. Genome Biology, 2022, 23, 39.	8.8	3
39	Reporting on the Role of miRNAs and Affected Pathways on the Molecular Backbone of Ovarian Insufficiency: A Systematic Review and Critical Analysis Mapping of Future Research. Frontiers in Cell and Developmental Biology, 2020, 8, 590106.	3.7	2
40	Computational Challenges and -omics Approaches for the Identification of microRNAs and Targets. , 2017, , 39-59.		1
41	ECCB 2018: The 17th European Conference on Computational Biology. Bioinformatics, 2018, 34, i595-i598.	4.1	1