
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7856857/publications.pdf Version: 2024-02-01

OLA LARSON

#	Article	IF	CITATIONS
1	Regulation of gene expression via translational buffering. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119140.	1.9	22
2	Polysome Fractionation for Transcriptome-Wide Studies of mRNA Translation. Methods in Molecular Biology, 2022, 2418, 223-241.	0.4	7
3	Anota2seq Analysis for Transcriptome-Wide Studies of mRNA Translation. Methods in Molecular Biology, 2022, 2418, 243-268.	0.4	5
4	PABP prevents the untimely decay of select mRNA populations in human cells. EMBO Journal, 2022, 41, e108650.	3.5	7
5	Adaptive translational reprogramming of metabolism limits the response to targeted therapy in BRAFV600 melanoma. Nature Communications, 2022, 13, 1100.	5.8	8
6	Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metabolism, 2022, 34, 564-580.e8.	7.2	21
7	MNK2 deficiency potentiates β-cell regeneration via translational regulation. Nature Chemical Biology, 2022, 18, 942-953.	3.9	9
8	Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. Science Advances, 2021, 7, .	4.7	68
9	Selective inhibitors of mTORC1 activate 4EBP1 and suppress tumor growth. Nature Chemical Biology, 2021, 17, 1065-1074.	3.9	33
10	The integrated stress response is tumorigenic and constitutes a therapeutic liability in KRAS-driven lung cancer. Nature Communications, 2021, 12, 4651.	5.8	22
11	MNK2 governs the macrophage antiinflammatory phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27556-27565.	3.3	24
12	The integrated stress response exposes a therapeutic vulnerability in KRAS driven lung cancer. European Journal of Cancer, 2020, 138, S23.	1.3	1
13	Reprogrammed <scp>mRNA</scp> translation drives resistance to therapeutic targeting of ribosome biogenesis. EMBO Journal, 2020, 39, e105111.	3.5	17
14	Translational profiling of macrophages infected with Leishmania donovani identifies mTOR- and eIF4A-sensitive immune-related transcripts. PLoS Pathogens, 2020, 16, e1008291.	2.1	24
15	SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Molecular Cancer Research, 2020, 18, 1560-1573.	1.5	13
16	An ErbB2/c-Src axis links bioenergetics with PRC2 translation to drive epigenetic reprogramming and mammary tumorigenesis. Nature Communications, 2019, 10, 2901.	5.8	24
17	Translational offsetting as a mode of estrogen receptor αâ€dependent regulation of geneÂexpression. EMBO Journal, 2019, 38, e101323.	3.5	33
18	RITA requires eIF2α-dependent modulation of mRNA translation for its anti-cancer activity. Cell Death and Disease, 2019, 10, 845.	2.7	7

#	Article	IF	CITATIONS
19	elF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nature Communications, 2019, 10, 5151.	5.8	64
20	Inhibition of Upf2-Dependent Nonsense-Mediated Decay Leads to Behavioral and Neurophysiological Abnormalities by Activating the Immune Response. Neuron, 2019, 104, 665-679.e8.	3.8	43
21	Separate domains of G3BP promote efficient clustering of alphavirus replication complexes and recruitment of the translation initiation machinery. PLoS Pathogens, 2019, 15, e1007842.	2.1	45
22	Hepatic posttranscriptional network comprised of CCR4–NOT deadenylase and FGF21 maintains systemic metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7973-7981.	3.3	21
23	Generally applicable transcriptome-wide analysis of translation using anota2seq. Nucleic Acids Research, 2019, 47, e70-e70.	6.5	70
24	Distinct Cancer-Promoting Stromal Gene Expression Depending on Lung Function. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 348-358.	2.5	20
25	Enhanced translation expands the endo-lysosome size and promotes antigen presentation during phagocyte activation. PLoS Biology, 2019, 17, e3000535.	2.6	49
26	elF4A inhibition circumvents uncontrolled DNA replication mediated by 4E-BP1 loss in pancreatic cancer. JCl Insight, 2019, 4, .	2.3	25
27	Polysome-profiling in small tissue samples. Nucleic Acids Research, 2018, 46, e3-e3.	6.5	53
28	Normalization of mass spectrometry data (NOMAD). Advances in Biological Regulation, 2018, 67, 128-133.	1.4	16
29	elF4E-Binding Proteins 1 and 2 Limit Macrophage Anti-Inflammatory Responses through Translational Repression of IL-10 and Cyclooxygenase-2. Journal of Immunology, 2018, 200, 4102-4116.	0.4	14
30	Chronic Obstructive Pulmonary Disease Phenotype Dictates Cancer-Promoting Stromal Gene Expression Programs. Annals of the American Thoracic Society, 2018, 15, S290-S291.	1.5	1
31	Translational and HIF-1α-Dependent Metabolic Reprogramming Underpin Metabolic Plasticity and Responses to Kinase Inhibitors and Biguanides. Cell Metabolism, 2018, 28, 817-832.e8.	7.2	61
32	The Protozoan Parasite Toxoplasma gondii Selectively Reprograms the Host Cell Translatome. Infection and Immunity, 2018, 86, .	1.0	22
33	A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease. Nucleic Acids Research, 2018, 46, 7772-7792.	6.5	41
34	mTOR-sensitive translation: Cleared fog reveals more trees. RNA Biology, 2017, 14, 1299-1305.	1.5	56
35	Cancer as an ecomolecular disease and a neoplastic consortium. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 484-499.	3.3	14
36	mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. Molecular Cell, 2017, 67, 922-935.e5.	4.5	249

#	Article	IF	CITATIONS
37	A Unique ISR Program Determines Cellular Responses to Chronic Stress. Molecular Cell, 2017, 68, 885-900.e6.	4.5	135
38	mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nature Communications, 2016, 7, 11127.	5.8	75
39	iGEMS: an integrated model for identification of alternative exon usage events. Nucleic Acids Research, 2016, 44, e109-e109.	6.5	18
40	Pericyte–fibroblast transition promotes tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5618-27.	3.3	246
41	IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood, 2016, 128, 1475-1489.	0.6	136
42	nanoCAGE reveals 5′ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs. Genome Research, 2016, 26, 636-648.	2.4	177
43	Tumor cell survival dependence on the DHX9 DExH-box helicase. Oncogene, 2016, 35, 5093-5105.	2.6	47
44	Assessment of mTOR-Dependent Translational Regulation of Interferon Stimulated Genes. PLoS ONE, 2015, 10, e0133482.	1.1	21
45	mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle, 2015, 14, 473-480.	1.3	397
46	A stringent validation of mouse adipose tissue identity markers. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1085-E1105.	1.8	242
47	Nuclear translocation of IGF-1R via p150Glued and an importin-β/RanBP2-dependent pathway in cancer cells. Oncogene, 2015, 34, 2227-2238.	2.6	52
48	Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene, 2015, 34, 2032-2042.	2.6	204
49	Estrogen receptor alpha drives proliferation in PTEN-deficient prostate carcinoma by stimulating survival signaling, MYC expression and altering glucose sensitivity. Oncotarget, 2015, 6, 604-616.	0.8	43
50	A proâ€ŧumourigenic loop at the human prostate tumour interface orchestrated by oestrogen, <scp>CXCL12</scp> and mast cell recruitment. Journal of Pathology, 2014, 234, 86-98.	2.1	47
51	Correlation of Regional Emphysema and Lung Cancer: A Lung Tissue Research Consortium-Based Study. Journal of Thoracic Oncology, 2014, 9, 639-645.	0.5	42
52	Translational control of immune responses: from transcripts to translatomes. Nature Immunology, 2014, 15, 503-511.	7.0	193
53	Suppression of the DHX9 Helicase Induces Premature Senescence in Human Diploid Fibroblasts in a p53-dependent Manner. Journal of Biological Chemistry, 2014, 289, 22798-22814.	1.6	37
54	Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. Journal of Molecular Cell Biology, 2014, 6, 255-266.	1.5	77

#	Article	IF	CITATIONS
55	SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma. Oncogene, 2014, 33, 5006-5016.	2.6	77
56	Identification of a Cell-of-Origin for Fibroblasts Comprising the Fibrotic Reticulum in Idiopathic Pulmonary Fibrosis. American Journal of Pathology, 2014, 184, 1369-1383.	1.9	67
57	Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale. Journal of Visualized Experiments, 2014, , .	0.2	153
58	Fibrotic extracellular matrix activates a profibrotic positive feedback loop. Journal of Clinical Investigation, 2014, 124, 1622-1635.	3.9	444
59	Tumour PDGF-BB expression levels determine dual effects of anti-PDGF drugs on vascular remodelling and metastasis. Nature Communications, 2013, 4, 2129.	5.8	94
60	mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metabolism, 2013, 18, 698-711.	7.2	647
61	Toward a Genome-Wide Landscape of Translational Control. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012302-a012302.	2.3	50
62	Distinct Translational Control in CD4+ T Cell Subsets. PLoS Genetics, 2013, 9, e1003494.	1.5	69
63	Hedgehog signaling is active in human prostate cancer stroma and regulates proliferation and differentiation of adjacent epithelium. Prostate, 2013, 73, 1810-1823.	1.2	40
64	Re-analysis of genome wide data on mammalian microRNA-mediated suppression of gene expression. Translation, 2013, 1, e24557.	2.9	19
65	RNAi screening uncovers Dhx9 as a modifier of ABT-737 resistance in an Eμ-myc/Bcl-2 mouse model. Blood, 2013, 121, 3402-3412.	0.6	32
66	Data-driven unbiased curation of the <i>TP53</i> tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9551-9556.	3.3	75
67	A Novel 4EHP-GIGYF2 Translational Repressor Complex Is Essential for Mammalian Development. Molecular and Cellular Biology, 2012, 32, 3585-3593.	1.1	164
68	PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nature Medicine, 2012, 18, 100-110.	15.2	185
69	Distinct perturbation of the translatome by the antidiabetic drug metformin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8977-8982.	3.3	169
70	Leishmania Repression of Host Translation through mTOR Cleavage Is Required for Parasite Survival and Infection. Cell Host and Microbe, 2011, 9, 331-341.	5.1	153
71	<i>anota</i> : analysis of differential translation in genome-wide studies. Bioinformatics, 2011, 27, 1440-1441.	1.8	64
72	elF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14134-14139.	3.3	447

#	Article	IF	CITATIONS
73	mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs. Science, 2010, 328, 1172-1176.	6.0	624
74	Identification of differential translation in genome wide studies. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21487-21492.	3.3	69
75	SUMOylation Mediates the Nuclear Translocation and Signaling of the IGF-1 Receptor. Science Signaling, 2010, 3, ra10.	1.6	206
76	Role of 3′UTRs in the Translation of mRNAs Regulated by Oncogenic eIF4E—A Computational Inference. PLoS ONE, 2009, 4, e4868.	1.1	19
77	The helicase protein DHX29 promotes translation initiation, cell proliferation, and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22217-22222.	3.3	103
78	Eukaryotic Initiation Factor 4E Binding Protein Family of Proteins: Sentinels at a Translational Control Checkpoint in Lung Tumor Defense. Cancer Research, 2009, 69, 8455-8462.	0.4	42
79	Chapter 12 Using Functional Genomics to Study PINK1 and Metabolic Physiology. Methods in Enzymology, 2009, 457, 211-229.	0.4	3
80	Regulatory element identification in subsets of transcripts: Comparison and integration of current computational methods. Rna, 2009, 15, 1469-1482.	1.6	13
81	p53-Dependent Translational Control of Senescence and Transformation via 4E-BPs. Cancer Cell, 2009, 16, 439-446.	7.7	104
82	Insulin receptor expression by human prostate cancers. Prostate, 2009, 69, 33-40.	1.2	203
83	A Chemical Genetic Screen for mTOR Pathway Inhibitors Based on 4E-BP-Dependent Nuclear Accumulation of eIF4E. Chemistry and Biology, 2009, 16, 1240-1249.	6.2	15
84	Hypoxia-Independent Angiogenesis in Adipose Tissues during Cold Acclimation. Cell Metabolism, 2009, 9, 99-109.	7.2	317
85	Genome-Wide Analysis of Translational Control. , 2009, , 217-236.		2
86	Translational control of the innate immune response through IRF-7. Nature, 2008, 452, 323-328.	13.7	275
87	Conserved GU-Rich Elements Mediate mRNA Decay by Binding to CUG-Binding Protein 1. Molecular Cell, 2008, 29, 263-270.	4.5	216
88	Gene Expression – Time to Change Point of View?. Biotechnology and Genetic Engineering Reviews, 2008, 25, 77-92.	2.4	11
89	Fibrotic Myofibroblasts Manifest Genome-Wide Derangements of Translational Control. PLoS ONE, 2008, 3, e3220.	1.1	90
90	Eukaryotic Translation Initiation Factor 4E–Induced Progression of Primary Human Mammary Epithelial Cells along the Cancer Pathway Is Associated with Targeted Translational Deregulation of Oncogenic Drivers and Inhibitors. Cancer Research, 2007, 67, 6814-6824.	0.4	145

#	Article	IF	CITATIONS
91	Altered regulation of the PINK1 locus: a link between type 2 diabetes and neurodegeneration?. FASEB Journal, 2007, 21, 3653-3665.	0.2	83
92	Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4401-4406.	3.3	637
93	Improved precision and accuracy for microarrays using updated probe set definitions. BMC Bioinformatics, 2007, 8, 48.	1.2	145
94	Epigenetic Activation of a Subset of mRNAs by eIF4E Explains Its Effects on Cell Proliferation. PLoS ONE, 2007, 2, e242.	1.1	184
95	Lack of correct data format and comparability limits future integrative microarray research. Nature Biotechnology, 2006, 24, 1322-1323.	9.4	54
96	Apoptosis resistance downstream of elF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Research, 2006, 34, 4375-4386.	6.5	61
97	Comparative Microarray Analysis. OMICS A Journal of Integrative Biology, 2006, 10, 381-397.	1.0	56
98	Considerations when using the significance analysis of microarrays (SAM) algorithm. BMC Bioinformatics, 2005, 6, 129.	1.2	101
99	Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB Journal, 2005, 19, 750-760.	0.2	128
100	The expression signature of in vitro senescence resembles mouse but not human aging. Genome Biology, 2005, 6, R109.	13.9	25
101	Kinetics of Senescence-associated Changes of Gene Expression in an Epithelial, Temperature-sensitive SV40 Large T Antigen Model. Cancer Research, 2004, 64, 482-489.	0.4	24
102	Functional comparison of single- and double-stranded siRNAs in mammalian cells. Biochemical and Biophysical Research Communications, 2004, 316, 680-687.	1.0	25
103	Effective small interfering RNAs and phosphorothioate antisense DNAs have different preferences for target sites in the luciferase mRNAs. Biochemical and Biophysical Research Communications, 2003, 306, 712-717.	1.0	60
104	Characterization of lacZ Complementation Deletions Using Membrane Receptor Dimerization. BioTechniques, 2003, 34, 346-355.	0.8	6
105	Quantitative codon optimisation of DNA libraries encoding sub-random peptides: design and characterisation of a novel library encoding transmembrane domain peptides. Nucleic Acids Research, 2002, 30, 133e-133.	6.5	2
106	Bactericidal antisense effects of peptide–PNA conjugates. Nature Biotechnology, 2001, 19, 360-364.	9.4	360
107	Silanized nucleic acids: a general platform for DNA immobilization. Nucleic Acids Research, 2000, 28, 71e-71.	6.5	82
108	Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. Microbiology (United Kingdom), 2000, 146, 2665-2670.	0.7	83

#	Article	IF	CITATIONS
109	Tandem Mass Spectrometry of Geranylgeranylcysteine. Journal of Mass Spectrometry, 1997, 32, 899-903.	0.7	1
110	HMG-CoA reductase inhibitors: role in normal and malignant cells. Critical Reviews in Oncology/Hematology, 1996, 22, 197-212.	2.0	63
111	Existence of a commitment program for mitosis in early G ₁ in tumour cells. Cell Proliferation, 1995, 28, 33-43.	2.4	25
112	Effects of isoprenoids on growth of normal human mammary epithelial cells and breast cancer cells in vitro. Anticancer Research, 1994, 14, 123-8.	0.5	6
113	Cell cycle-specific growth inhibition of human breast cancer cells induced by metabolic inhibitors. Glycobiology, 1993, 3, 475-479.	1.3	18
114	Regulatory role of mevalonate in the growth of normal and neoplastic human mammary epithelial cells. Anticancer Research, 1993, 13, 1075-9.	0.5	7
115	Cell cycle regulation of human diploid fibroblasts: Possible mechanisms of platelet-derived growth factor. Journal of Cellular Physiology, 1989, 139, 477-483.	2.0	21
116	Abolition of mevinolin-induced growth inhibition in human fibroblasts following transformation by simian virus 40. Cancer Research, 1989, 49, 5605-10.	0.4	18
117	The role of HMG CoA reductase and dolichol synthesis in the control of 3T6 cell proliferation: effects of cell crowding, serum depletion and addition of epidermal growth factor. Journal of Cell Science, 1988, 90 (Pt 4), 613-20.	1.2	1
118	Role of biosynthesis of cholesterol and isoprenoid derivatives in regulation of G1 progression and cell proliferation of 3T6 cells. Journal of Cellular Physiology, 1987, 133, 163-168.	2.0	15
119	Cell-cycle-specific induction of quiescence achieved by limited inhibition of protein synthesis: counteractive effect of addition of purified growth factors. Journal of Cell Science, 1985, 73, 375-87.	1.2	23
120	DNA Immobilization: Silanized Nucleic Acids and Nanoprinting. , 0, , 45.		1
121	Translational and HIF11-Dependent Metabolic Reprograming Underpin Oncometabolome Plasticity and Synergy Between Oncogenic Kinase Inhibitors and Biguanides. SSRN Electronic Journal, 0, , .	0.4	1