
Giulia Maria Camerino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7856113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission. PLoS ONE, 2012, 7, e33232.	2.5	144
2	Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Frontiers in Pharmacology, 2016, 7, 121.	3.5	121
3	Multiple pathological events in exercised dystrophic mdx mice are targeted by pentoxifylline: outcome of a large array of in vivo and ex vivo tests. Journal of Applied Physiology, 2009, 106, 1311-1324.	2.5	76
4	Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacological Research, 2010, 61, 553-563.	7.1	74
5	Fluvastatin and Atorvastatin Affect Calcium Homeostasis of Rat Skeletal Muscle Fibers in Vivo and in Vitro by Impairing the Sarcoplasmic Reticulum/Mitochondria Ca ²⁺ -Release System. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 626-634.	2.5	67
6	Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatinâ€induced cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 386-404.	7.3	58
7	Gene expression in mdx mouse muscle in relation to age and exercise: aberrant mechanical–metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy. Human Molecular Genetics, 2014, 23, 5720-5732.	2.9	49
8	GLPG0492, a novel selective androgen receptor modulator, improves muscle performance in the exercised-mdx mouse model of muscular dystrophy. Pharmacological Research, 2013, 72, 9-24.	7.1	46
9	Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle. Neurobiology of Disease, 2008, 32, 243-253.	4.4	44
10	Statins and fenofibrate affect skeletal muscle chloride conductance in rats by differently impairing ClCâ€l channel regulation and expression. British Journal of Pharmacology, 2009, 156, 1206-1215.	5.4	44
11	The K _{ATP} channel is a molecular sensor of atrophy in skeletal muscle. Journal of Physiology, 2010, 588, 773-784.	2.9	44
12	Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease modifier in dystrophinâ€deficient <i>mdx</i> mice: proofâ€ofâ€concept study and independent validation of efficacy. FASEB Journal, 2018, 32, 1025-1043.	0.5	40
13	Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points. Journal of Applied Physiology, 2017, 122, 828-843.	2.5	38
14	Growth hormone secretagogues hexarelin and JMV2894 protect skeletal muscle from mitochondrial damages in a rat model of cisplatin-induced cachexia. Scientific Reports, 2017, 7, 13017.	3.3	37
15	An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function. Age, 2014, 36, 73-88.	3.0	36
16	Assessment of resveratrol, apocynin and taurine on mechanical-metabolic uncoupling and oxidative stress in a mouse model of duchenne muscular dystrophy: A comparison with the gold standard, α-methyl prednisolone. Pharmacological Research, 2016, 106, 101-113.	7.1	35
17	Splicing of the rSlo Gene Affects the Molecular Composition and Drug Response of Ca2+-Activated K+ Channels in Skeletal Muscle. PLoS ONE, 2012, 7, e40235.	2.5	34
18	Effect of a long-term treatment with metformin in dystrophic mdx mice: A reconsideration of its potential clinical interest in Duchenne muscular dystrophy. Biochemical Pharmacology, 2018, 154, 89-103.	4.4	34

#	Article	IF	CITATIONS
19	Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat. Amino Acids, 2012, 43, 431-445.	2.7	33
20	Dual response of the KATP channels to staurosporine: A novel role of SUR2B, SUR1 and Kir6.2 subunits in the regulation of the atrophy in different skeletal muscle phenotypes. Biochemical Pharmacology, 2014, 91, 266-275.	4.4	32
21	A long-term treatment with taurine prevents cardiac dysfunction in mdx mice. Translational Research, 2019, 204, 82-99.	5.0	32
22	Emerging Role of Calcium-Activated Potassium Channel in the Regulation of Cell Viability Following Potassium Ions Challenge in HEK293 Cells and Pharmacological Modulation. PLoS ONE, 2013, 8, e69551.	2.5	31
23	Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT ₁ receptor and NADPH oxidase. American Journal of Physiology - Cell Physiology, 2014, 307, C634-C647.	4.6	30
24	Clinical, Molecular, and Functional Characterization of CLCN1 Mutations in Three Families with Recessive Myotonia Congenita. NeuroMolecular Medicine, 2015, 17, 285-296.	3.4	29
25	Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options. Scientific Reports, 2019, 9, 3185.	3.3	29
26	Statin or fibrate chronic treatment modifies the proteomic profile of rat skeletal muscle. Biochemical Pharmacology, 2011, 81, 1054-1064.	4.4	28
27	Protein kinase C theta (PKCÎ) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCÎ, Pflugers Archiv European Journal of Physiology, 2014, 466, 2215-2228.	2.8	28
28	Characterization of minoxidil/hydroxypropyl-β-cyclodextrin inclusion complex in aqueous alginate gel useful for alopecia management: Efficacy evaluation in male rat. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 146-157.	4.3	25
29	Multidisciplinary study of a new CICâ€1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies. FASEB Journal, 2016, 30, 3285-3295.	0.5	24
30	Effects of Pleiotrophin Overexpression on Mouse Skeletal Muscles in Normal Loading and in Actual and Simulated Microgravity. PLoS ONE, 2013, 8, e72028.	2.5	24
31	Kidney CLC-K chloride channels inhibitors. Journal of Hypertension, 2016, 34, 981-992.	0.5	22
32	Risk of Myopathy in Patients in Therapy with Statins: Identification of Biological Markers in a Pilot Study. Frontiers in Pharmacology, 2017, 8, 500.	3.5	22
33	Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin. Toxicology and Applied Pharmacology, 2016, 306, 36-46.	2.8	21
34	ATP Sensitive Potassium Channels in the Skeletal Muscle Function: Involvement of the KCNJ11(Kir6.2) Gene in the Determination of Mechanical Warner Bratzer Shear Force. Frontiers in Physiology, 2016, 7, 167.	2.8	20
35	Visceral Fat Dysfunctions in the Rat Social Isolation Model of Psychosis. Frontiers in Pharmacology, 2017, 8, 787.	3.5	20
36	Pathophysiological Consequences of KATP Channel Overactivity and Pharmacological Response to Glibenclamide in Skeletal Muscle of a Murine Model of Cantù Syndrome. Frontiers in Pharmacology, 2020, 11, 604885.	3.5	19

#	Article	IF	CITATIONS
37	Effects of Nandrolone in the Counteraction of Skeletal Muscle Atrophy in a Mouse Model of Muscle Disuse: Molecular Biology and Functional Evaluation. PLoS ONE, 2015, 10, e0129686.	2.5	19
38	The large conductance Ca2+ -activated K+ (BKCa) channel regulates cell proliferation in SH-SY5Y neuroblastoma cells by activating the staurosporine-sensitive protein kinases. Frontiers in Physiology, 2014, 5, 476.	2.8	18
39	In vivo longitudinal study of rodent skeletal muscle atrophy using ultrasonography. Scientific Reports, 2016, 6, 20061.	3.3	17
40	Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence. International Journal of Molecular Sciences, 2021, 22, 2070.	4.1	17
41	Proof-of-concept validation of the mechanism of action of Src tyrosine kinase inhibitors in dystrophic mdx mouse muscle: in vivo and in vitro studies. Pharmacological Research, 2019, 145, 104260.	7.1	13
42	Molecular Determinants for the Activating/Blocking Actions of the 2H-1,4-Benzoxazine Derivatives, a Class of Potassium Channel Modulators Targeting the Skeletal Muscle KATP Channels. Molecular Pharmacology, 2008, 74, 50-58.	2.3	12
43	BCAAs and Di-Alanine supplementation in the prevention of skeletal muscle atrophy: preclinical evaluation in a murine model of hind limb unloading. Pharmacological Research, 2021, 171, 105798.	7.1	12
44	Gain-of-Function STIM1 L96V Mutation Causes Myogenesis Alteration in Muscle Cells From a Patient Affected by Tubular Aggregate Myopathy. Frontiers in Cell and Developmental Biology, 2021, 9, 635063.	3.7	10
45	Consequences of SUR2[A478V] Mutation in Skeletal Muscle of Murine Model of Cantu Syndrome. Cells, 2021, 10, 1791.	4.1	10
46	Therapeutic Targets in Amyotrophic Lateral Sclerosis: Focus on Ion Channels and Skeletal Muscle. Cells, 2022, 11, 415.	4.1	8
47	Alteration of STIM1/Orai1-Mediated SOCE in Skeletal Muscle: Impact in Genetic Muscle Diseases and Beyond. Cells, 2021, 10, 2722.	4.1	7
48	Functional Study of Novel Bartter's Syndrome Mutations in ClC-Kb and Rescue by the Accessory Subunit Barttin Toward Personalized Medicine. Frontiers in Pharmacology, 2020, 11, 327.	3.5	6
49	Pathomechanisms of a CLCN1 Mutation Found in a Russian Family Suffering From Becker's Myotonia. Frontiers in Neurology, 2020, 11, 1019.	2.4	5
50	Changes in Expression and Cellular Localization of Rat Skeletal Muscle ClC-1 Chloride Channel in Relation to Age, Myofiber Phenotype and PKC Modulation. Frontiers in Pharmacology, 2020, 11, 714.	3.5	4
51	Calcium Homeostasis Is Altered in Skeletal Muscle of Spontaneously Hypertensive Rats. American Journal of Pathology, 2014, 184, 2803-2815.	3.8	1
52	Calcium-Activated K Channel Regulates Cell Viability in Hyperkalemic and Hypokalemic Conditions: Implication in the Neuromuscular Disoders. Biophysical Journal, 2014, 106, 535a.	0.5	1
53	Staurosporine Blocks the ATP-Sensitive K+Channels and Induces Atrophy in Rodent Skeletal Muscles. Biophysical Journal, 2013, 104, 483a.	0.5	0
54	LATE BREAKING NEWS E-POSTER PRESENTATION. Neuromuscular Disorders, 2020, 30, S169-S170.	0.6	0

#	Article	IF	CITATIONS
55	Targeted pharmacotherapy for trafficking defective ClC-1 mutations in myotonia congenita. Journal of the Neurological Sciences, 2021, 429, 118425.	0.6	0