Charlene P Wight

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7856075/publications.pdf

Version: 2024-02-01

516710 580821 25 907 16 25 citations g-index h-index papers 25 25 25 825 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	GrainGenes: Tools and Content to Assist Breeders Improving Oat Quality. Foods, 2022, 11, 914.	4.3	2
2	GrainGenes: a data-rich repository for small grains genetics and genomics. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	3.0	22
3	Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Communications Biology, 2022, 5, 474.	4.4	23
4	New evidence confirming the CD genomic constitutions of the tetraploid Avena species in the section Pachycarpa Baum. PLoS ONE, 2021, 16, e0240703.	2.5	11
5	Mapping of the stem rust resistance gene Pg13 in cultivated oat. Theoretical and Applied Genetics, 2020, 133, 259-270.	3.6	11
6	A genetic linkage map in southernâ€byâ€spring oat identifies multiple quantitative trait loci for adaptation and rust resistance. Plant Breeding, 2019, 138, 82-94.	1.9	17
7	Comparative linkage mapping of diploid, tetraploid, and hexaploid Avena species suggests extensive chromosome rearrangement in ancestral diploids. Scientific Reports, 2019, 9, 12298.	3.3	26
8	OUP accepted manuscript. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	50
9	Haplotypeâ€based genotypingâ€byâ€sequencing in oat genome research. Plant Biotechnology Journal, 2018, 16, 1452-1463.	8.3	86
10	Genomic relationships among sixteen species of Avena based on (ACT)6 trinucleotide repeat FISH. Genome, 2018, 61, 63-70.	2.0	12
11	Genetic mapping and a new PCR-based marker linked to a dwarfing gene in oat (<i>Avena sativa</i> L). Genome, 2018, 61, 497-503.	2.0	3
12	Screening Oat Genotypes for Tolerance to Salinity and Alkalinity. Frontiers in Plant Science, 2018, 9, 1302.	3.6	33
13	Conferring resistance to pre-harvest sprouting in durum wheat by a QTL identified in Triticum spelta. Euphytica, 2017, 213, 1.	1.2	8
14	Population Genomics Related to Adaptation in Elite Oat Germplasm. Plant Genome, 2016, 9, plantgenome2015.10.0103.	2.8	55
15	High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. Theoretical and Applied Genetics, 2016, 129, 2133-2149.	3. 6	56
16	A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement. Plant Genome, 2016, 9, plantgenome2015.10.0102.	2.8	85
17	Centromeric position and genomic allocation of a repetitive sequence isolated from chromosome 18D of hexaploid oat, Avena sativa L Genetic Resources and Crop Evolution, 2015, 62, 1-4.	1.6	15
18	Using Genotyping-By-Sequencing (GBS) for Genomic Discovery in Cultivated Oat. PLoS ONE, 2014, 9, e102448.	2.5	147

#	Article	IF	CITATIONS
19	Tagging and mapping candidate loci for vernalization and flower initiation in hexaploid oat. Molecular Breeding, 2012, 30, 1295-1312.	2.1	23
20	A Set of New Simple Sequence Repeat and Avenin DNA Markers Suitable for Mapping and Fingerprinting Studies in Oat (<i>Avena</i> spp.). Crop Science, 2010, 50, 1207-1218.	1.8	21
21	Loci affecting flowering time in oat under short-day conditions. Genome, 2006, 49, 1528-1538.	2.0	25
22	Discovery, localization, and sequence characterization of molecular markers for the crown rust resistance genes Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.). Molecular Breeding, 2005, 14, 349-361.	2.1	8
23	Discovery, localization, and sequence characterization of molecular markers for the crown rust resistance genes Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.). Molecular Breeding, 2004, 14, 349-361.	2.1	40
24	A molecular marker map in 'Kanota' \tilde{A} — 'Ogle' hexaploid oat (<i>Avena</i> spp.) enhanced by additional markers and a robust framework. Genome, 2003, 46, 28-47.	2.0	107
25	The identification of random amplified polymorphic DNA markers for daylength insensitivity in oat. Genome, 1994, 37, 910-914.	2.0	21