Hui Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7856031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews, 2014, 36, 107-122.	16.4	402
2	Biomass-based chemical looping technologies: the good, the bad and the future. Energy and Environmental Science, 2017, 10, 1885-1910.	30.8	382
3	The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta, 2013, 566, 36-43.	2.7	156
4	Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nature Catalysis, 2021, 4, 860-871.	34.4	138
5	Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Management, 2015, 36, 136-146.	7.4	119
6	Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 2013, 104, 28-37.	5.5	117
7	A review of dioxin-related substances during municipal solid waste incineration. Waste Management, 2015, 36, 106-118.	7.4	111
8	A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Advances, 2015, 5, 26509-26516.	3.6	109
9	Polycyclic Aromatic Hydrocarbon Formation from the Pyrolysis/Gasification of Lignin at Different Reaction Conditions. Energy & Fuels, 2014, 28, 6371-6379.	5.1	100
10	Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel, 2015, 145, 151-157.	6.4	94
11	TGA pyrolysis and gasification of combustible municipal solid waste. Journal of the Energy Institute, 2015, 88, 332-343.	5.3	91
12	Classification and comparison of municipal solid waste based on thermochemical characteristics. Journal of the Air and Waste Management Association, 2014, 64, 597-616.	1.9	81
13	Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Management, 2015, 38, 194-200.	7.4	80
14	Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose. Nature Communications, 2022, 13, .	12.8	69
15	Interactions of municipal solid waste components during pyrolysis: A TG-FTIR study. Journal of Analytical and Applied Pyrolysis, 2014, 108, 19-25.	5.5	68
16	Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Management, 2015, 46, 247-256.	7.4	67
17	Interactions of three municipal solid waste components during co-pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 111, 265-271.	5.5	66
18	Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nature Communications, 2021, 12, 5510.	12.8	63

Ниі Zнои

#	Article	IF	CITATIONS
19	Study on the co-pyrolysis of high density polyethylene and potato blends using thermogravimetric analyzer and tubular furnace. Journal of Analytical and Applied Pyrolysis, 2015, 112, 66-73.	5.5	62
20	Effect of interactions of PVC and biomass components on the formation of polycyclic aromatic hydrocarbons (PAH) during fast co-pyrolysis. RSC Advances, 2015, 5, 11371-11377.	3.6	56
21	Influence of process conditions on the formation of 2–4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride. Fuel Processing Technology, 2016, 144, 299-304.	7.2	49
22	Dry Reforming of Model Biogas on a Ni/SiO ₂ Catalyst: Overall Performance and Mechanisms of Sulfur Poisoning and Regeneration. ACS Sustainable Chemistry and Engineering, 2017, 5, 10248-10257.	6.7	45
23	Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics. Waste Management, 2021, 126, 331-339.	7.4	44
24	Effect of interactions of biomass constituents on polycyclic aromatic hydrocarbons (PAH) formation during fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 2014, 110, 264-269.	5.5	43
25	Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105135.	5.5	42
26	Toward hydrogen economy: Selective guaiacol hydrogenolysis under ambient hydrogen pressure. Applied Catalysis B: Environmental, 2020, 270, 118890.	20.2	37
27	Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renewable Energy, 2020, 148, 168-175.	8.9	34
28	Bauxite residue as a catalyst for microwave-assisted pyrolysis of switchgrass to high quality bio-oil and biochar. Chemical Engineering Journal, 2021, 426, 131294.	12.7	34
29	Pyrolysis and simulation of typical components in wastes with macro-TGA. Fuel, 2015, 157, 1-8.	6.4	33
30	Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers. Korean Journal of Chemical Engineering, 2016, 33, 2638-2643.	2.7	31
31	Steam reforming of polystyrene at a low temperature for high H2/CO gas with bimetallic Ni-Fe/ZrO2 catalyst. Waste Management, 2020, 104, 42-50.	7.4	30
32	From biomass to hydrochar: Evolution on elemental composition, morphology, and chemical structure. Journal of the Energy Institute, 2022, 101, 194-200.	5.3	27
33	Two-step conversion of Kraft lignin to nylon precursors under mild conditions. Green Chemistry, 2020, 22, 4676-4682.	9.0	25
34	Low-temperature alkaline pyrolysis of sewage sludge for enhanced H2 production with in-situ carbon capture. International Journal of Hydrogen Energy, 2019, 44, 8020-8027.	7.1	24
35	Evolution of kraft lignin during hydrothermal treatment under different reaction conditions. Journal of the Energy Institute, 2022, 103, 147-153.	5.3	21
36	Insight into the relationship between CO2 gasification characteristics and char structure of biomass. Biomass and Bioenergy, 2022, 163, 106537.	5.7	16

Ниі Zнои

#	Article	IF	CITATIONS
37	Formation and evolution of pectin-derived hydrothermal carbon from pectin. Fuel, 2022, 326, 124997.	6.4	16
38	Integrated direct air capture and CO2 utilization of gas fertilizer based on moisture swing adsorption. Journal of Zhejiang University: Science A, 2017, 18, 819-830.	2.4	14
39	Pyrolysis and Combustion of Typical Wastes in a Newly Designed Macro Thermogravimetric Analyzer: Characteristics and Simulation by Model Components. Energy & Fuels, 2017, 31, 7582-7590.	5.1	13
40	Alkaline Thermal Treatment of Cellulosic Biomass for H ₂ Production Using Ca-Based Bifunctional Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 1202-1209.	6.7	12
41	Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture. Applied Energy, 2020, 264, 114675.	10.1	12
42	Effects of Sorbents on the Partitioning and Speciation of Cu During Municipal Solid Waste Incineration. Chinese Journal of Chemical Engineering, 2014, 22, 1347-1351.	3.5	11
43	Two-Stage Gasification of Sewage Sludge for Enhanced Hydrogen Production: Alkaline Pyrolysis Coupled with Catalytic Reforming Using Waste-Supported Ni Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 13377-13386.	6.7	8
44	Effects of bed size on the voidage in gas-solid bubbling fluidized beds. Powder Technology, 2021, 387, 197-204.	4.2	8
45	Investigation of biomass ash thermal decomposition by thermogravimetry using raw and artificial ashes. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 726-736.	1.5	7
46	Prediction of higher heating values of combustible solid wastes by pseudo-components and thermal mass coefficients. Thermochimica Acta, 2017, 658, 93-100.	2.7	7
47	Excess Properties of and Simultaneous Effects of Important Parameters on CO ₂ Solubility in Binary Mixture of Water-Phosphonium Based-Deep Eutectic Solvents: Response Surface Methodology (RSM) and Taguchi Method. Energy & Fuels, 2022, 36, 1960-1972.	5.1	7
48	Combustible Solid Waste Thermochemical Conversion. Springer Theses, 2017, , .	0.1	6
49	Thermal and Kinetic Behaviors during Co-Pyrolysis of Microcrystalline Cellulose and Styrene–Butadiene–Styrene Triblock Copolymer. Processes, 2021, 9, 1335.	2.8	6
50	Heat Transfer Calculation inÂFurnaces. , 2016, , 131-172.		5
51	Characterization Studies on Waste Plastics as a Feedstock for Energy Recovery in Malaysia. International Journal of Engineering and Technology(UAE), 2018, 7, 534.	0.3	4
52	Effects of Ash Deposition and Slagging on Heat Transfer. , 2016, , 173-191.		3
53	Measuring Heat Transfer in the Furnace. , 2016, , 193-203.		3
54	Statistical study of the distribution of voidage in a bubbling fluidized bed with a constant section. Chemical Engineering Research and Design, 2021, 171, 305-316.	5.6	3

Ниі Zнои

#	Article	IF	CITATIONS
55	Theoretical Foundation and Basic Properties of Thermal Radiation. , 2016, , 1-43.		2
56	A grey-relation-based method (GRM) for thermogravimetric (TG) data analysis. Journal of Material Cycles and Waste Management, 2018, 20, 1026-1035.	3.0	2
57	Research Method. Springer Theses, 2017, , 33-62.	0.1	2
58	Emission and Absorption of Thermal Radiation. , 2016, , 45-74.		0
59	Radiation Heat Exchange Between Isothermal Surfaces. , 2016, , 75-99.		0
60	Influence of Interactions on the Pyrolytic Characteristics of Basic Components. Springer Theses, 2017, , 143-167.	0.1	0
61	Pyrolysis Characteristics of Basic Components. Springer Theses, 2017, , 63-97.	0.1	0
62	Influential Factors of Thermochemical Conversion of Basic Components. Springer Theses, 2017, , 99-142.	0.1	0