
George N Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7855254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	When function is biological: Discerning how silver nanoparticle structure dictates antimicrobial activity. IScience, 2022, 25, 104475.	4.1	7
2	Metabolic engineering of Escherichia coli for quinolinic acid production by assembling L-aspartate oxidase and quinolinate synthase as an enzyme complex. Metabolic Engineering, 2021, 67, 164-172.	7.0	12
3	Combinatorial design of chemicalâ€dependent protein switches for controlling intracellular electron transfer. AICHE Journal, 2020, 66, e16796.	3.6	12
4	Improved succinate production from galactoseâ€rich feedstocks by engineered <i>Escherichia coli</i> under anaerobic conditions. Biotechnology and Bioengineering, 2020, 117, 1082-1091.	3.3	7
5	Metabolic engineering of Escherichia coli for malate production with a temperature sensitive malate dehydrogenase. Biochemical Engineering Journal, 2020, 164, 107762.	3.6	2
6	Recombination of 2Fe-2S Ferredoxins Reveals Differences in the Inheritance of Thermostability and Midpoint Potential. ACS Synthetic Biology, 2020, 9, 3245-3253.	3.8	6
7	Single cell protein production from food waste using purple non-sulfur bacteria shows economically viable protein products have higher environmental impacts. Journal of Cleaner Production, 2020, 276, 123114.	9.3	32
8	Genetic sensor-regulators functional in Clostridia. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 609-620.	3.0	2
9	100th Anniversary of Macromolecular Science Viewpoint: Soft Materials for Microbial Bioelectronics. ACS Macro Letters, 2020, 9, 1590-1603.	4.8	14
10	Prochlorococcus phage ferredoxin: structural characterization and electron transfer to cyanobacterial sulfite reductases. Journal of Biological Chemistry, 2020, 295, 10610-10623.	3.4	10
11	Localized mandibular infection affects remote in vivo bioreactor bone generation. Biomaterials, 2020, 256, 120185.	11.4	12
12	Improving the organization and interactivity of metabolic pathfinding with precomputed pathways. BMC Bioinformatics, 2020, 21, 13.	2.6	17
13	Metabolic engineering of <i>Escherichia coli</i> to produce succinate from woody hydrolysate under anaerobic conditions. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 223-232.	3.0	7
14	De novo design of symmetric ferredoxins that shuttle electrons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14557-14562.	7.1	41
15	Biosynthesis of Medium-Chain ω-Hydroxy Fatty Acids by AlkBGT of Pseudomonas putida GPo1 With Native FadL in Engineered Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2019, 7, 273.	4.1	11
16	Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers. Frontiers in Energy Research, 2019, 7, .	2.3	39
17	Metalloprotein switches that display chemical-dependent electron transfer in cells. Nature Chemical Biology, 2019, 15, 189-195.	8.0	46
18	Metabolic engineering of <i>Escherichia coli</i> to produce succinate from soybean hydrolysate under anaerobic conditions. Biotechnology and Bioengineering, 2018, 115, 1743-1754.	3.3	15

#	Article	IF	CITATIONS
19	Ratiometric Gas Reporting: A Nondisruptive Approach To Monitor Gene Expression in Soils. ACS Synthetic Biology, 2018, 7, 903-911.	3.8	24
20	High yield production of four-carbon dicarboxylic acids by metabolically engineered <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2018, 45, 53-60.	3.0	17
21	Improvement of butanol production in <i>Clostridium acetobutylicum</i> through enhancement of NAD(P)H availability. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 993-1002.	3.0	24
22	Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C. Metabolic Engineering, 2018, 48, 175-183.	7.0	33
23	Genome analysis of a hyper acetoneâ€butanolâ€ethanol (ABE) producing <i>Clostridium acetobutylicum</i> BKM19. Biotechnology Journal, 2017, 12, 1600457.	3.5	9
24	Effects of Local Antibiotic Delivery from Porous Space Maintainers on Infection Clearance and Induction of an Osteogenic Membrane in an Infected Bone Defect. Tissue Engineering - Part A, 2017, 23, 91-100.	3.1	37
25	Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 647-658.	3.0	9
26	Role of Clostridial Nitroreductases in Bioremediation. , 2017, , 175-186.		2
27	Polymer-Based Local Antibiotic Delivery for Prevention of Polymicrobial Infection in Contaminated Mandibular Implants. ACS Biomaterials Science and Engineering, 2016, 2, 558-566.	5.2	17
28	Direct bioconversion of sorghum extract sugars to free fatty acids using metabolically engineered Escherichia coli strains: Value addition to the sorghum bioenergy crop. Biomass and Bioenergy, 2016, 93, 217-226.	5.7	3
29	Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways. Biochemistry, 2016, 55, 7047-7064.	2.5	44
30	Volatile Gas Production by Methyl Halide Transferase: An In Situ Reporter Of Microbial Gene Expression In Soil. Environmental Science & Technology, 2016, 50, 8750-8759.	10.0	24
31	A rapid, flexible method for incorporating controlled antibiotic release into porous polymethylmethacrylate space maintainers for craniofacial reconstruction. Biomaterials Science, 2016, 4, 121-129.	5.4	8
32	Use of transposase and ends of IS608 enables precise and scarless genome modification for modulating gene expression and metabolic engineering applications in Escherichia coli. Biotechnology Journal, 2016, 11, 80-90.	3.5	4
33	Efficient production of free fatty acids from soybean meal carbohydrates. Biotechnology and Bioengineering, 2015, 112, 2324-2333.	3.3	16
34	Efficient free fatty acid production in engineered <scp><i>E</i></scp> <i>scherichia coli</i> strains using soybean oligosaccharides as feedstock. Biotechnology Progress, 2015, 31, 686-694.	2.6	10
35	Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli. Metabolic Engineering, 2015, 28, 159-168.	7.0	18
36	Metabolic control of respiratory levels in coenzyme Q biosynthesisâ€deficient <i>Escherichia coli</i> strains leading to fineâ€tune aerobic lactate fermentation. Biotechnology and Bioengineering, 2015, 112, 1720-1726.	3.3	10

#	Article	IF	CITATIONS
37	Metabolic engineering of carbon and redox flow in the production of small organic acids. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 403-422.	3.0	53
38	Soybean Carbohydrates as a Renewable Feedstock for the Fermentative Production of Succinic Acid and Ethanol. ACS Symposium Series, 2014, , 81-107.	0.5	2
39	Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. Applied Microbiology and Biotechnology, 2014, 98, 5105-5115.	3.6	29
40	Effects of Antibiotic Physicochemical Properties on Their Release Kinetics from Biodegradable Polymer Microparticles. Pharmaceutical Research, 2014, 31, 3379-3389.	3.5	39
41	Increased Biofuel Production by Metabolic Engineering of Clostridium acetobutylicum. , 2014, , 361-376.		1
42	Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD+-dependent formate dehydrogenase. Metabolic Engineering, 2013, 20, 1-8.	7.0	93
43	Characterization and evaluation of corn steep liquid in acetone-butanol-ethanol production by Clostridium acetobutylicum. Biotechnology and Bioprocess Engineering, 2013, 18, 266-271.	2.6	10
44	Evaluation of antibiotic releasing porous polymethylmethacrylate space maintainers in an infected composite tissue defect model. Acta Biomaterialia, 2013, 9, 8832-8839.	8.3	26
45	Improvement of NADPH bioavailability in <i>Escherichia coli</i> by replacing NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP+-dependent GapB from <i>Bacillus subtilis</i> and addition of NAD kinase. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1449-1460.	3.0	21
46	Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions. Bioresource Technology, 2013, 130, 398-405.	9.6	50
47	Metabolic engineering and transhydrogenase effects on NADPH availability in <i>escherichia coli</i> . Biotechnology Progress, 2013, 29, 1124-1130.	2.6	35
48	Cofactor engineering for advancing chemical biotechnology. Current Opinion in Biotechnology, 2013, 24, 994-999.	6.6	132
49	Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Applied Microbiology and Biotechnology, 2013, 97, 6883-6893.	3.6	26
50	Analysis of redox responses during TNT transformation by Clostridium acetobutylicum ATCC 824 and mutants exhibiting altered metabolism. Applied Microbiology and Biotechnology, 2013, 97, 4651-4663.	3.6	10
51	Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation. Applied and Environmental Microbiology, 2012, 78, 1416-1423.	3.1	213
52	Succinate production in <i>Escherichia coli</i> . Biotechnology Journal, 2012, 7, 213-224.	3.5	159
53	Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products. Metabolic Engineering, 2011, 13, 704-712.	7.0	28
54	Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1013-1025.	3.0	35

#	Article	IF	CITATIONS
55	Effect of culture operating conditions on succinate production in a multiphase fed-batch bioreactor using an engineered Escherichia coli strain. Applied Microbiology and Biotechnology, 2011, 92, 499-508.	3.6	24
56	Culture conditions' impact on succinate production by a high succinate producing <i>Escherichia coli</i> strain. Biotechnology Progress, 2011, 27, 1225-1231.	2.6	8
57	Succinate production from sucrose by metabolic engineered <i>escherichia coli</i> strains under aerobic conditions. Biotechnology Progress, 2011, 27, 1242-1247.	2.6	11
58	Heterologous pyc gene expression under various natural and engineered promoters in Escherichia coli for improved succinate production. Journal of Biotechnology, 2011, 155, 236-243.	3.8	27
59	Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains. Metabolic Engineering, 2011, 13, 328-335.	7.0	53
60	An Algorithm for Efficient Identification of Branched Metabolic Pathways. Journal of Computational Biology, 2011, 18, 1575-1597.	1.6	13
61	Structural correlations of activity of Clostridium acetobutylicum ATCC 824 butyrate kinase isozymes. Enzyme and Microbial Technology, 2010, 46, 118-124.	3.2	10
62	Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metabolic Engineering, 2010, 12, 499-509.	7.0	46
63	Finding metabolic pathways using atom tracking. Bioinformatics, 2010, 26, 1548-1555.	4.1	52
64	Metabolic Flux Analysis of <i>Escherichia coli creB</i> and <i>arcA</i> Mutants Reveals Shared Control of Carbon Catabolism under Microaerobic Growth Conditions. Journal of Bacteriology, 2009, 191, 5538-5548.	2.2	46
65	Metabolic engineering of the anaerobic central metabolic pathway in <i>Escherichia coli</i> for the simultaneous anaerobic production of isoamyl acetate and succinic acid. Biotechnology Progress, 2009, 25, 1304-1309.	2.6	10
66	Microbial formation of esters. Applied Microbiology and Biotechnology, 2009, 85, 13-25.	3.6	109
67	Environmentally-modulated changes in fluorescence distribution in cells with oscillatory genetic network dynamics. Journal of Biotechnology, 2009, 140, 203-217.	3.8	5
68	Chemical biotechnology: an expanding discipline that contributes to sustainable development in the 21st century. Current Opinion in Biotechnology, 2009, 20, 607-609.	6.6	1
69	Activity of abrB310 promoter in wild type and spo0A-deficient strains of Clostridium acetobutylicum. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 743-750.	3.0	7
70	Engineering poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) copolymer composition in <i>E. coli</i> . Biotechnology and Bioengineering, 2008, 99, 919-928.	3.3	31
71	Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metabolic Engineering, 2008, 10, 97-108.	7.0	56
72	Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metabolic Engineering, 2008, 10, 352-359.	7.0	118

#	Article	IF	CITATIONS
73	Efficient Succinic Acid Production from Glucose through Overexpression of Pyruvate Carboxylase in an Escherichia coli Alcohol Dehydrogenase and Lactate Dehydrogenase Mutant. Biotechnology Progress, 2008, 21, 358-365.	2.6	118
74	Redistribution of Metabolic Fluxes in the Central Aerobic Metabolic Pathway of E. coli Mutant Strains with Deletion of the ackA-pta and poxB Pathways for the Synthesis of Isoamyl Acetate. Biotechnology Progress, 2008, 21, 627-631.	2.6	68
75	Characterization of the Acetate-Producing Pathways in Escherichia coli. Biotechnology Progress, 2008, 21, 1062-1067.	2.6	113
76	Clostridium taeniosporum is a close relative of the Clostridium botulinum Group II. Anaerobe, 2008, 14, 318-324.	2.1	6
77	Cell population heterogeneity in expression of a gene-switching network with fluorescent markers of different half-lives. Journal of Biotechnology, 2007, 128, 362-375.	3.8	8
78	The YfiD protein contributes to the pyruvate formate-lyase flux in anEscherichia coli arcA mutant strain. Biotechnology and Bioengineering, 2007, 97, 138-143.	3.3	20
79	Analysis of the clostridial hydrophobic with a conserved tryptophan family (ChW) of proteins in Clostridium acetobutylicum with emphasis on ChW14 and ChW16/17. Enzyme and Microbial Technology, 2007, 42, 29-43.	3.2	7
80	Characterization of a novel ferredoxin with N-terminal extension from Clostridium acetobutylicum ATCC 824. Archives of Microbiology, 2007, 187, 161-169.	2.2	3
81	Characterization of alcohol dehydrogenase 1 and 3 from Neurospora crassa FGSC2489. Applied Microbiology and Biotechnology, 2007, 76, 349-356.	3.6	18
82	Characterization of d-ribose biosynthesis in Bacillus subtilis JY200 deficient in transketolase gene. Journal of Biotechnology, 2006, 121, 508-516.	3.8	12
83	Expression of the pfl Gene and Resulting Metabolite Flux Distribution in nuo and ackA-pta E. coli Mutant Strains. Biotechnology Progress, 2006, 22, 898-902.	2.6	2
84	Effect of Overexpression of a Soluble Pyridine Nucleotide Transhydrogenase (UdhA) on the Production of Poly(3-hydroxybutyrate) in Escherichia coli. Biotechnology Progress, 2006, 22, 420-425.	2.6	95
85	Ester production in E. coli and C. acetobutylicum. Enzyme and Microbial Technology, 2006, 38, 937-943.	3.2	30
86	Development of a metabolic network design and optimization framework incorporating implementation constraints: A succinate production case study. Metabolic Engineering, 2006, 8, 46-57.	7.0	40
87	Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metabolic Engineering, 2006, 8, 209-226.	7.0	78
88	Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments. Metabolic Engineering, 2006, 8, 619-627.	7.0	36
89	Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and SpoOA strain variants. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 298-308.	3.0	48
90	Studies on inhibition of transformation of 2,4,6-trinitrotoluene catalyzed by Fe-only hydrogenase from Clostridium acetobutylicum. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 368-376.	3.0	7

#	Article	IF	CITATIONS
91	Molecular cloning and characterization of the alcohol dehydrogenase ADH1 gene of Candida utilis ATCC 9950. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 1032-1036.	3.0	28
92	Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Applied Microbiology and Biotechnology, 2006, 71, 870-874.	3.6	116
93	A kinetic model of oxygen regulation of cytochrome production in Escherichia coli. Journal of Theoretical Biology, 2006, 242, 547-563.	1.7	13
94	Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metabolic Engineering, 2005, 7, 116-127.	7.0	179
95	Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metabolic Engineering, 2005, 7, 229-239.	7.0	226
96	Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: A study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metabolic Engineering, 2005, 7, 337-352.	7.0	41
97	Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metabolic Engineering, 2005, 7, 364-374.	7.0	107
98	Genetically constrained metabolic flux analysis. Metabolic Engineering, 2005, 7, 445-456.	7.0	21
99	Enhanced Lycopene Productivity by Manipulation of Carbon Flow to Isopentenyl Diphosphate in Escherichia coli. Biotechnology Progress, 2005, 21, 1558-1561.	2.6	74
100	Genetic reconstruction of the aerobic central metabolism inEscherichia coli for the absolute aerobic production of succinate. Biotechnology and Bioengineering, 2005, 89, 148-156.	3.3	106
101	Effect of oxygen on the <i>Escherichia coli</i> ArcA and FNR regulation systems and metabolic responses. Biotechnology and Bioengineering, 2005, 89, 556-564.	3.3	107
102	Fedâ€batch culture of a metabolically engineered <i>Escherichia coli</i> strain designed for highâ€level succinate production and yield under aerobic conditions. Biotechnology and Bioengineering, 2005, 90, 775-779.	3.3	110
103	Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway inEscherichia coli under microaerobic growth conditions. Biotechnology and Bioengineering, 2005, 92, 147-159.	3.3	111
104	Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli. Applied Microbiology and Biotechnology, 2005, 67, 515-523.	3.6	65
105	Biodegradation of xenobiotics by anaerobic bacteria. Applied Microbiology and Biotechnology, 2005, 67, 600-618.	3.6	135
106	Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824. Archives of Microbiology, 2005, 184, 158-167.	2.2	45
107	Characterization of thermostable Xyn10A enzyme from mesophilic Clostridium acetobutylicum ATCC 824. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 12-18.	3.0	21
108	Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 87-93.	3.0	52

#	Article	IF	CITATIONS
109	Intracellular Butyryl Phosphate and Acetyl Phosphate Concentrations in <i>Clostridium acetobutylicum</i> and Their Implications for Solvent Formation. Applied and Environmental Microbiology, 2005, 71, 530-537.	3.1	87
110	SpollE Regulates Sporulation but Does Not Directly Affect Solventogenesis in Clostridium acetobutylicum ATCC 824. Journal of Bacteriology, 2005, 187, 1930-1936.	2.2	51
111	Expression of <i>abrB310</i> and <i>sinR</i> , and Effects of Decreased <i>abrB310</i> Expression on the Transition from Acidogenesis to Solventogenesis, in <i>Clostridium acetobutylicum</i> ATCC 824. Applied and Environmental Microbiology, 2005, 71, 1987-1995.	3.1	44
112	Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. Journal of Biotechnology, 2005, 117, 395-405.	3.8	63
113	Enhanced Isoamyl Acetate Production upon Manipulation of the Acetyl-CoA Node in Escherichia coli. Biotechnology Progress, 2004, 20, 692-697.	2.6	20
114	Increasing the Acetyl-CoA Pool in the Presence of Overexpressed Phosphoenolpyruvate Carboxylase or Pyruvate Carboxylase Enhances Succinate Production in Escherichia coli. Biotechnology Progress, 2004, 20, 1599-1604.	2.6	67
115	Thermostable xylanase10B from Clostridium acetobutylicum ATCC824. Journal of Industrial Microbiology and Biotechnology, 2004, 31, 229-234.	3.0	20
116	Production of isoamyl acetate in ackA-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2. Applied Microbiology and Biotechnology, 2004, 63, 698-704.	3.6	41
117	Effect of different levels of NADH availability on metabolite distribution in Escherichia coli fermentation in minimal and complex media. Applied Microbiology and Biotechnology, 2004, 65, 426-432.	3.6	46
118	Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metabolic Engineering, 2004, 6, 133-139.	7.0	75
119	Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli. Metabolic Engineering, 2004, 6, 294-299.	7.0	53
120	MUTAGENICITY OF NITROAROMATIC DEGRADATION COMPOUNDS. Environmental Toxicology and Chemistry, 2003, 22, 2293.	4.3	94
121	The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 34-40.	3.0	47
122	Sequences affecting the regulation of solvent production in Clostridium acetobutylicum. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 414-420.	3.0	12
123	Heterologous expression of the Saccharomyces cerevisiae alcohol acetyltransferase genes in Clostridium acetobutylicum and Escherichia coli for the production of isoamyl acetate. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 427-432.	3.0	38
124	Role of Hydroxylamine Intermediates in the Phytotransformation of 2,4,6-Trinitrotoluene byMyriophyllum aquaticum. Environmental Science & Technology, 2003, 37, 3595-3600.	10.0	43
125	Expression of a Cloned Cyclopropane Fatty Acid Synthase Gene Reduces Solvent Formation in Clostridium acetobutylicum ATCC 824. Applied and Environmental Microbiology, 2003, 69, 2831-2841.	3.1	101
126	2,4,6-Trinitrotoluene Reduction by an Fe-Only Hydrogenase in Clostridium acetobutylicum. Applied and Environmental Microbiology, 2003, 69, 1542-1547.	3.1	46

#	Article	IF	CITATIONS
127	Metabolic Engineering through Cofactor Manipulation and Its Effects on Metabolic Flux Redistribution in Escherichia coli. Metabolic Engineering, 2002, 4, 182-192.	7.0	234
128	Metabolic Engineering of Escherichia coli: Increase of NADH Availability by Overexpressing an NAD+-Dependent Formate Dehydrogenase. Metabolic Engineering, 2002, 4, 217-229.	7.0	254
129	The Effect of Increasing NADH Availability on the Redistribution of Metabolic Fluxes in Escherichia coli Chemostat Cultures. Metabolic Engineering, 2002, 4, 230-237.	7.0	142
130	Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium <i>Clostridium acetobutylicum</i> . Journal of Bacteriology, 2001, 183, 4823-4838.	2.2	725
131	The Effects of Feed and Intracellular Pyruvate Levels on the Redistribution of Metabolic Fluxes in Escherichia coli. Metabolic Engineering, 2001, 3, 115-123.	7.0	65
132	Effect of variation ofKlebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution inEscherichia coli. , 2000, 69, 150-159.		27
133	Effect of Glucose Analog Supplementation on Metabolic Flux Distribution in Anaerobic Chemostat Cultures of Escherichia coli. Metabolic Engineering, 2000, 2, 149-154.	7.0	9
134	Mutagenicity of trinitrotoluene and metabolites formed during anaerobic degradation byClostridium acetobutylicumATCC 824. Environmental Toxicology and Chemistry, 2000, 19, 2871-2875.	4.3	15
135	Cloning, Sequencing, and Characterization of the Gene Encoding Flagellin, flaC, and the Post-translational Modification of Flagellin, FlaC, from Clostridium acetobutylicum ATCC824. Anaerobe, 2000, 6, 69-79.	2.1	22
136	2,4,6-Trinitrotoluene Reduction by Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum. Applied and Environmental Microbiology, 2000, 66, 1474-1478.	3.1	72
137	MUTAGENICITY OF TRINITROTOLUENE AND METABOLITES FORMED DURING ANAEROBIC DEGRADATION BY CLOSTRIDIUM ACETOBUTYLICUM ATCC 824. Environmental Toxicology and Chemistry, 2000, 19, 2871.	4.3	7
138	Improvement of Biomass Yield and Recombinant Gene Expression in Escherichia coli by Using Fructose as the Primary Carbon Source. Biotechnology Progress, 1999, 15, 140-145.	2.6	42
139	Metabolic Flux Analysis ofEscherichia coliDeficient in the Acetate Production Pathway and Expressing theBacillus subtilisAcetolactate Synthase. Metabolic Engineering, 1999, 1, 26-34.	7.0	77
140	Redistribution of Metabolic Fluxes inEscherichia coliwith Fermentative Lactate Dehydrogenase Overexpression and Deletion. Metabolic Engineering, 1999, 1, 141-152.	7.0	66
141	Metabolic flux analysis ofEscherichia coli expressing theBacillus subtilis acetolactate synthase in batch and continuous cultures. , 1999, 63, 737-749.		32
142	Effect of inactivation ofnuo andackA-pta on redistribution of metabolic fluxes inEscherichia coli. Biotechnology and Bioengineering, 1999, 65, 291-297.	3.3	48
143	Overexpression, Purification, and Characterization of the Thermostable Mevalonate Kinase from Methanococcus jannaschii. Protein Expression and Purification, 1999, 17, 33-40.	1.3	38
144	Characterization of Methylglyoxal Synthase from <i>Clostridium acetobutylicum</i> ATCC 824 and Its Use in the Formation of 1,2-Propanediol. Applied and Environmental Microbiology, 1999, 65, 3244-3247.	3.1	45

#	Article	IF	CITATIONS
145	Regulation of the sol Locus Genes for Butanol and Acetone Formation in Clostridium acetobutylicum ATCC 824 by a Putative Transcriptional Repressor. Journal of Bacteriology, 1999, 181, 319-330.	2.2	95
146	Reduction of 2,4,6â€ŧrinitrotoluene by <i>Clostridium acetobutylicum</i> through hydroxylaminoâ€nitrotoluene intermediates. Environmental Toxicology and Chemistry, 1998, 17, 343-348.	4.3	51
147	Genetic manipulation of acid and solvent formation inClostridium acetobutylicum ATCC 824. , 1998, 58, 215-221.		26
148	Complementation of an Escherichia coli Polypeptide Deformylase Mutant with a Gene from Clostridium acetobutylicum ATCC 824. Current Microbiology, 1998, 36, 248-249.	2.2	4
149	Cloning, Sequence, and Expression of the Phosphofructokinase Gene of Clostridium acetobutylicum ATCC 824 in Escherichia coli. Current Microbiology, 1998, 37, 17-22.	2.2	15
150	REDUCTION OF 2,4,6-TRINITROTOLUENE BY CLOSTRIDIUM ACETOBUTYLICUM THROUGH HYDROXYLAMINO-NITROTOLUENE INTERMEDIATES. Environmental Toxicology and Chemistry, 1998, 17, 343.	4.3	14
151	A method for construction of E. coli strains with multiple DNA insertions in the chromosome. Gene, 1997, 187, 231-238.	2.2	43
152	Cloning and Assembly of PCR Products Using Modified Primers and DNA Repair Enzymes. BioTechniques, 1997, 23, 858-864.	1.8	11
153	Escherichia coli strain for thermoinducible T7 RNA polymerase-driven expression. Gene, 1996, 177, 267-268.	2.2	4
154	Inactivation of an aldehyde/alcohol dehydrogenase gene fromClostridium acetobutylicum ATCC 824. Applied Biochemistry and Biotechnology, 1996, 57-58, 213-221.	2.9	48
155	Recombination-Induced Variants of Clostridium acetobutylicum ATCC 824 with Increased Solvent Production. Current Microbiology, 1996, 32, 349-356.	2.2	8
156	Genetic manipulation of stationary-phase genes to enhance recombinant protein production inEscherichia coli. , 1996, 50, 636-642.		22
157	Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli. Microbiology (United Kingdom), 1996, 142, 1311-1320.	1.8	71
158	Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnology Progress, 1995, 11, 475-478.	2.6	69
159	Characterization of a pH-inducible promoter system for high-level expression of recombinant proteins inEscherichia coli. Biotechnology and Bioengineering, 1995, 47, 186-192.	3.3	31
160	The central metabolic pathway from acetyl-CoA to butyryl-CoA inClostridium acetobutylicum. FEMS Microbiology Reviews, 1995, 17, 241-249.	8.6	65
161	Sequence and arrangement of genes encoding sigma factors in Clostridium acetobutylicum ATCC 824. Gene, 1995, 153, 89-92.	2.2	22
162	Characterization of an acetyl-CoA C-acetyltransferase (thiolase) gene from Clostridium acetobutylicum ATCC 824. Gene, 1995, 154, 81-85.	2.2	48

#	Article	IF	CITATIONS
163	Modification of central metabolic pathway inescherichia coli to reduce acetate accumulation by heterologous expression of thebacillus subtilis acetolactate synthase gene. Biotechnology and Bioengineering, 1994, 44, 944-951.	3.3	84
164	Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production inescherichia coli dense cultures. Biotechnology and Bioengineering, 1994, 44, 952-960.	3.3	97
165	Effect of Modulated Glucose Uptake on High-Level Recombinant Protein Production in a Dense Escherichia coli Culture. Biotechnology Progress, 1994, 10, 644-647.	2.6	44
166	Genetic and Metabolic Engineering of Clostridium acetobutylicum ATCC 824. Annals of the New York Academy of Sciences, 1994, 721, 54-68.	3.8	27
167	Intracellular Concentrations of Coenzyme A and Its Derivatives from <i>Clostridium acetobutylicum</i> ATCC 824 and Their Roles in Enzyme Regulation. Applied and Environmental Microbiology, 1994, 60, 39-44.	3.1	65
168	Metabolic engineering ofClostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon. Biotechnology and Bioengineering, 1993, 42, 1053-1060.	3.3	98
169	Isolation of mutants ofClostridium acetobutylicum ATCC 824 deficient in protease activity. Current Microbiology, 1993, 26, 151-154.	2.2	8
170	Sequence and arrangement of two genes of the butyrate-synthesis pathway of Clostridium acetobutylicum ATCC 824. Gene, 1993, 134, 107-111.	2.2	76
171	Sequence and arrangement of genes encoding enzymes of the acetone-production pathway of Clostridium acetobutylicum ATCC 824. Gene, 1993, 123, 93-97.	2.2	58
172	Expression of Cloned Homologous Fermentative Genes in Clostridium Acetobutylicum ATCC 824. Nature Biotechnology, 1992, 10, 190-195.	17.5	209
173	Vector Construction, Transformation, and Gene Amplification in Clostridium acetobutylicum ATCC 824. Annals of the New York Academy of Sciences, 1992, 665, 39-51.	3.8	32
174	Construction ofEscherichia coli-Clostridium acetobutylicum shuttle vectors and transformation ofClostridium acetobutylicum strains. Biotechnology Letters, 1992, 14, 427-432.	2.2	33
175	Effects of rifampicin and chloramphenicol on product and enzyme levels of the acid- and solvent-producing pathways of Clostridium acetobutylicum (ATCC 824). Enzyme and Microbial Technology, 1992, 14, 277-283.	3.2	10
176	Cloning of an NADH-Dependent Butanol Dehydrogenase Gene from Clostridium acetobutylicum. Annals of the New York Academy of Sciences, 1991, 646, 94-98.	3.8	6
177	Enzymatic characterization of a nonmotile, nonsolventogenicClostridium acetobutylicum ATCC 824 mutant. Current Microbiology, 1991, 23, 253-258.	2.2	15
178	Methods for Cloning Key Primary Metabolic Enzymes and Ancillary Proteins Associated with the Acetone-Butanol Fermentation of Clostridium acetobutylicum. Annals of the New York Academy of Sciences, 1990, 589, 67-81.	3.8	4
179	Regulation of lysine decarboxylase activity in Escherichia coli K-12. Archives of Microbiology, 1989, 151, 466-468.	2.2	19
180	Isolation and Characterization of Mutants of <i>Clostridium acetobutylicum</i> ATCC 824 Deficient in Acetoacetyl-Coenzyme A:Acetate/Butyrate:Coenzyme A-Transferase (EC 2.8.3.9) and in Other Solvent Pathway Enzymes. Applied and Environmental Microbiology, 1989, 55, 970-976.	3.1	88

#	Article	IF	CITATIONS
181	Synthesis and Expression of a Gene for a Mini Type II Dihydrofolate Reductase. DNA and Cell Biology, 1988, 7, 243-251.	5.2	12
182	Construction and characterization of pBR322-derived plasmids with deletions of the RNA I region. Gene, 1986, 41, 281-288.	2.2	15
183	Role of DNA regions flanking the tryptophan promoter of Escherichia coli I. Insertion of synthetic oligonucleotides. Gene, 1984, 32, 337-348.	2.2	21
184	Enzymatic digestion of operator DNA in the presence of the lac repressor tryptic core. Journal of Molecular Biology, 1984, 179, 335-350.	4.2	14
185	Formation of alkali labile linkages in DNA by hedamycin and use of hedamycin as a probe of protein-DNA complexes. Nucleic Acids Research, 1982, 10, 4581-4594.	14.5	26
186	Cloning of small DNA fragments containing the Escherichia coli tryptophan operon promoter and operator. Gene, 1982, 17, 9-18.	2.2	22
187	Construction and analysis of in vivo activity of E. coll promoter hybrids and promoter mutants that alter the â~'35 to â~'10 spacing. Gene, 1982, 20, 231-243.	2.2	260
188	Anthramycin inhibition of restriction endonuclease cleavage and its use as a reversible blocking agent in DNA constructions. Nucleic Acids Research, 1981, 9, 2105-2120.	14.5	26
189	Characterization of the \hat{I}^2 -lactamase promoter of pBR322. Nucleic Acids Research, 1981, 9, 2517-2533.	14.5	50
190	Escherichia coli RNA polymerase and trp repressor interaction with the promoter-operator region of the tryptophan operon of Salmonella typhimurium. Journal of Molecular Biology, 1980, 144, 133-142.	4.2	60
191	Nucleotide sequences of the trpG regions of Escherichia coli, Shigella dysenteriae, Salmonella typhimurium and Serratia marcescens. Journal of Molecular Biology, 1980, 142, 503-517.	4.2	134
192	In vivo cloning of DNA regions carrying mutations linked to selectable genes: Application to mutations in the regulatory region of the Escherichia coli tryptophan operon. Plasmid, 1979, 2, 498-502.	1.4	9
193	Sequence analysis of operator constitutive mutants of the tryptophan operon of Escherichia coli. Journal of Molecular Biology, 1978, 121, 179-192.	4.2	124
194	Comparison of the nucleotide sequences of the initial transcribed regions of the tryptophan operons of Escherichia coli and Salmonella typhimurium. Journal of Molecular Biology, 1978, 121, 193-217.	4.2	92